University of Swaziland

Final Examination - May 2015

BA in Social Science I

Title of Paper	$:$ Elementary Quantitative Techniques II
Course Number	$:$ MS012
Time Allowed	$:$ Two (2) hours

Instructions:

1. This paper consists of 2 sections.
2. Answer ALL questions in Section A.
3. Answer ANY 2 questions in Section B.
4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A

Answer ALL Questions in this section

A. 1 a. Evaluate
i. $\lim _{x \rightarrow-3}\left(x^{2}-7 x-9\right)$ [2 marks]
ii. $\lim _{x \rightarrow 3}\left(\frac{4 x+6}{x^{2}+3}\right)$ [2 marks]
iii. $\lim _{x \rightarrow 3}\left(\frac{x-3}{3 x-x^{2}}\right)$ [3 marks]
iv. $\lim _{x \rightarrow \infty}\left(\frac{6 x^{2}-7 x+3}{4-3 x-2 x^{2}}\right)$ [4 marks]
A. 2 a. State the limit definition of the derivative of the function $f(x)$. [2 marks]
b. Use the limit definition to find $\frac{\mathrm{d} f}{\mathrm{~d} x}$ given

$$
f(x)=3 x-5 .
$$

c. Find y^{\prime} if
i. $y=7+5 x-3 x^{2}$
ii. $y=12 X^{\frac{3}{9}}-25 X^{-\frac{2}{5}}$ [3 marks]
iii. $y=x-\frac{3}{x}$ [3 marks]
iv. $y=e^{2 x-3}$ [2 marks]
v. $y=\ln (4 x)$ [3 marks]
A. 3 a. State the Fundamental Theorem of Calculus. [3 marks]
b. Integrate
i. $\int_{0}^{5}\left(9+8 x-6 x^{2}\right) \mathrm{d} x$ [5 marks]
ii. $\int\left(6 X^{\frac{1}{2}}-\frac{5}{X}\right) \mathrm{d} X$ [3 marks]
iii. $\int\left(\frac{4}{x^{3}}-\frac{6}{x^{4}}\right) \mathrm{d} x$ [3 marks]
iv. $\int e^{-2 x} \mathrm{~d} x$ [3 marks]

Section B
 Answer ANY 2 Questions in this section

B. 4 a. Find the value of the limit

$$
\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}
$$

b. Find the indicated derivative

i. y	$=\left(x^{2}+4\right)^{8}$	y^{\prime}	
ii. y	$=x e^{-2 x}$,	y^{\prime}	[3 marks]
iii. y	$=\frac{2 x}{4-5 x}$,	y^{\prime}	$[4$ marks]
iv. y	$=8 \sqrt{x}-\frac{1}{x}$,	$y^{\prime \prime \prime}$	$[6$ marks]

B. 5 a. Consider the function

$$
y=4+9 x^{2}-x^{3} .
$$

i. Find the stationary points and classify them as relative maxima or minima.
ii. Find the y-intercept.
iii. Make a sketch of the graph of y.
b. The profit (in Emalangeni) of a company is given by

$$
P(x)=85 x-0.02 x^{2}-10000
$$

where x is the number of units sold per month. Find the
i. profit if the number of units sold is 1,500
ii. the maximum monthly profit.

Section B
 Answer ANY 2 Questions in this section

B. 4 a. Find the value of the limit

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1} \tag{7marks}
\end{equation*}
$$

b. Find the indicated derivative

i. $y=\left(x^{2}+4\right)^{8}$	y^{\prime}	
ii. $y=x e^{-2 x}$,	y^{\prime}	[3 marks]
iii. $y=\frac{2 x}{4-5 x}$,	y^{\prime}	
iv. $y=8 \sqrt{x}-\frac{1}{x}$,	$y^{\prime \prime \prime}$	$[6$ marks]

B. 5 a. Consider the function

$$
y=4+9 x^{2}-x^{3} .
$$

i. Find the stationary points and classify them as relative maxima or minima.
ii. Find the y-intercept. [2 marks]
iii. Make a sketch of the graph of y. [4 marks]
b. The profit (in Emalangeni) of a company is given by

$$
P(x)=85 x-0.02 x^{2}-10000
$$

where x is the number of units sold per month. Find the
i. profit if the number of units sold is 1,500
ii. the maximum monthly profit.
B. 6 a. By first making the substitution $u=x^{2}-1$, evaluate the integral

$$
\int 10 x\left(x^{2}-1\right)^{4} \mathrm{~d} x
$$

b. The total costs of a company (under certain conditions) are given by

$$
C(x)=x^{2}+\frac{2000}{x}
$$

where x is the number of units (in thousands) produced per month. Find the number of units that minimises the monthly total costs.
[15 marks]
B. 7 a. Use the method of tabular integration to evaluate

$$
\int 81 x e^{2 x} \mathrm{~d} x
$$

b. Find the area of the shaded region in the figure blow.

