University of Swaziland

Final Examination, December 2014

B.A.S.S. I , B.Comm I, D.Comm I (IDE), B. Ed

Title of Paper	: Algebra, Trigonometry and Analytic Geometry
Course Code	: MS101
Time Allowed	$:$ Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Special requirements: None

This paper should not be opened until permission has been given by the invigleator.

SECTION A: ANSWER ALL QUESTIONS

QUESTION 1

a. State the remainder theorem.
b. Using the remainder theorem find the remainder when the polynomial $P(x)=3 x^{4}+x^{3}-4 x^{2}+5$ divided by $x-1$.
c. Using the long division method find the quotient and remainder when

$$
\begin{equation*}
P(x)=x^{4}+3 x^{3}-2 x+4 \tag{4}
\end{equation*}
$$

is divided by $D(x)=x+1$.
d. The polynomial $P(x)=x^{3}+A x^{2}+B x+6$ has $(x-2)$ and $(x+1)$ as factors. Find the values of A and B.
e. Solve the following equations (without using a calculator)
i. $\log _{3}(x+1)-\log _{3}(x-1)=1$.
ii. $4^{2 x}=5^{x+1}$.
iii. $x+\left(\frac{8}{27}\right)^{-\frac{1}{3}}=0$.
f. Calculate $(A-B) C^{T}$ if the matrices A, B and C are given by

$$
A=\left[\begin{array}{cc}
1 & -2 \tag{5}\\
4 & 4 \\
6 & 3 \\
3 & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 5 \\
-2 & 4 \\
1 & 3 \\
3 & -1
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{ll}
0 & 1 \\
2 & 1 \\
1 & 0 \\
3 & 2
\end{array}\right]
$$

g. Find the equation of a straight line passing through $(-1,1)$ and is parallel to the line $2 x+y-1=0$.
h. If θ is an acute angle and $\sin \theta=\frac{12}{13}$, find all possible values of $\cos \theta$ and $\tan \theta$.
i. Evaluate $\frac{(1+i)(2+3 i)}{1-i}$ and write the solution in the form $a+b i$.

SECTION B: ANSWER ANY 3 QUESTIONS

QUESTION 2

Given the following polynomial

$$
P(x)=2 x^{4}+3 x^{3}-4 x^{2}-3 x+2
$$

i. List all the possible roots of $P(x)$.
ii. Find the number of positive real zeros(roots) of $P(x)$.
iii. Find the number of negative real zeros(roots) of $P(x)$.
iv. Use the factor theorem and synthetic division (ONLY) to find the factors of $P(x)$.[11]

QUESTION 3

i. A new car costs $E 100,000$. Assume that it depreciates 24% the first year, 20% the second year, 16% the third year, and continues in the same manner for 6 years. If all depreciations apply to the original cost, what is the value of the car in 6 years? [5]
ii. How long will it take for money in an account that is compounded continuously at 8% interest to double?
iii. The fourth term of a geometric series is 16 and the second term is 2 . Find the first term and a common ratio?
iv. Express $\log _{b} 2 x+3\left(\log _{b} x-\log _{b} y\right)$ as a single logarithm with a coefficient of 1 . $[5]$

QUESTION 4

i. Find the $6^{\text {th }}$ term in the expansion of

$$
\left(3 a^{2}+2 b\right)^{10} .
$$

ii. Write the first four terms in the expansion of $(1+x)^{-\frac{1}{3}}$.
iii Use Cramer's rule to solve the following system of equations

$$
\begin{aligned}
3 x+2 y+z & =10 \\
2 x+3 y-z & =5 \\
x+y+3 z & =12
\end{aligned}
$$

QUESTION 5

i. Find the value of $\sqrt{120}$ correct to four significant figures (use binomial expansion). [7]
ii. Prove the following trigonometric identity

$$
(\sin \theta+\cos \theta)(\tan \theta+\cot \theta)=\sec \theta+\csc \theta
$$

iii. Convert 2.071613613613613..... into and equivalent fraction. .

QUESTION 6

i. Prove by mathematical induction that the formula

$$
5 \cdot 6+5 \cdot 6^{2}+5 \cdot 6^{3}+\ldots+5 \cdot 6^{n}=6 \cdot\left(6^{n}-1\right)
$$

is valid for all positive integers.
ii. Given the points $A=(4,0)$ and $B=(6,4)$. Find the equation of a circle with centre A and passing through the point B.
iii. Find the equation of a straight line passing through the intersection of $3 x-y=9$ and $x+2 y=-4$, perpendicular to $3=4 y+8 x$.

