Final Examination, May 2015

B.A.S.S. I , B.Comm I, D.Comm I (IDE)

Title of Paper : Calculus for Business and Social Science
Course Code : MS102
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

SECTION A: ANSWER ALL QUESTIONS

QUESTION 1

(a) The price-demand function and the cost function of calculators are given respectively by

$$
p(x)=100-\frac{x}{50} \text { and } C(x)=20000+15 x
$$

where x is the number of calculators that can be sold at a price of p Emalangeni per calculator and $C(x)$ is the total cost of producing x calculators. Find
(i) the exact cost of producing the $21 s t$ calculator.
(ii) $C^{\prime}(10)$ and interpret your result.
(iii) $R^{\prime}(10)$ and interpret your result.
(iv) the number of calculators that maximize profit.
(b) Evaluate the following limits
(i) $\lim _{x \rightarrow 3} \frac{x^{2}+3 x+9}{x+3}$.
(ii) $\lim _{x \rightarrow 0} \frac{x^{3}-x^{2}-x}{x}$.
(iii) $\lim _{x \rightarrow \infty} \frac{15-7 x+x^{3}}{15+14 x-2 x^{3}}$.
(c) Find the derivatives of the following functions
(i) $f(x)=\sqrt[3]{x} \cos (5 x)$.
(ii) $f(x)=\left(\frac{x^{2}+1}{\ln x}\right)^{2}$.

QUESTION 2

(a) Evaluate the following integrals
(i) $\int\left(2 x-\frac{1}{4 x}+\sin (7 x+1)\right) d x$.
[3 marks]
(ii) $\int_{0}^{5} \frac{4 x^{3}+2 x}{x^{4}+x^{2}-4} d x$.
[5 marks]
(b) Find the area of the region bounded by the two curves $y=x^{2}$ and $y=x+2 .[5$ marks]

SECTION B: ANSWER ANY 3 QUESTIONS

QUESTION 3

(a) Evaluate the following limits
(i) $\lim _{x \rightarrow 4} \frac{x^{2}-16}{\sqrt{x}-2}$.
[6 marks]
(ii) $\lim _{x \rightarrow-3} \frac{x^{3}+9 x^{2}+26 x+24}{x+3}$.
[7 marks]
(b) State the three conditions which guarantee continuity of a function $f(x)$ at the point $x=c$. Using these properties test whether the function

$$
f(x)= \begin{cases}\frac{x^{2}-25}{5-x}, & x \neq 5 \\ 9, & x=5\end{cases}
$$

is continuous at the point $x=5$.

QUESTION 4

Find the derivative of the following functions
(a) $f(x)=2^{\cos x}$.
(b) $f(x)=\ln \left[\left(x^{2}+4\right)(x-4)\right]$. [5 marks]
(c) $f(x)=\left(\frac{x^{2}+x}{x}\right)^{4}$.
(d) $f(x)=e^{3 x} \ln \left(x^{3}+1\right)$.

QUESTION 5

(a) Given the function

$$
y=2 x^{3}-15 x^{2}+36 x-10
$$

find the
(i) local maximum.
(ii) local minimum.
(b) Find the intervals where the curve is
(i) increasing.
(ii) decreasing.
(iii) concave up.
(iv) concave down.
(c) What is a point of inflection? Using this definition find the inflection point for the function $f(x)$.
(d) Use all the information obtained in $(a)-(c)$ to sketch the graph of the function. [4 marks]

QUESTION 6

(a) Given the demand function $D(x)$ and the supply function $S(x)$

$$
D(x)=60-\frac{x^{2}}{10}, \quad S(x)=30-\frac{63 x}{10}+\frac{x^{2}}{5}
$$

find the
(i) equilibrium quantity, [2 marks]
(ii) consumer surplus?
(ii) producer surplus,
(b) Find the slope and equation of the tangent line to the graph of

$$
f(x)=x e^{x^{2}-1}
$$

at $x=1$.

QUESTION 7

(a) Evaluate the following integrals
(i) $\int(x+3) \cos x d x$, [5 marks]
(ii) $\int_{0}^{5} \frac{x+2}{x^{2}-5 x+6} d x$. [5 marks]
(b) A company manufactures x carts per month. If the monthly cost and price-demand functions are given by

$$
C(x)=\frac{x^{2}}{100}+\frac{x}{2}+8, \quad p(x)=-\frac{x}{200}+1
$$

Find the following, for each month.
(i) Average profit function.
(ii) Find the marginal average cost function.
(iii) Find the marginal average profit function.

END

