University of Swaziland

Final Examination, May 2015

B.A.S.S. I, B.Comm I, D.Comm I (IDE)

Title of Paper	: Calculus for Business and Social Science
Course Code	: MS102
Time Allowed	: Three (3) Hours

Instructions

- 1. This paper consists of TWO sections.
 - a. **SECTION A(COMPULSORY): 40 MARKS** Answer ALL QUESTIONS.
 - b. SECTION B: 60 MARKS Answer ANY THREE questions. Submit solutions to ONLY THREE questions in Section B.

2. Each question in Section B is worth 20%.

- 3. Show all your working.
- 4. Non programmable calculators may be used (unless otherwise stated).

5. Special requirements: None.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

QUESTION 1

(a) The price-demand function and the cost function of calculators are given respectively by

$$p(x) = 100 - \frac{x}{50}$$
 and $C(x) = 20000 + 15x$

where x is the number of calculators that can be sold at a price of p Emalangeni per calculator and C(x) is the total cost of producing x calculators. Find

- (i) the exact cost of producing the 21st calculator.[2 marks](ii) C'(10) and interpret your result.[3 marks](iii) R'(10) and interpret your result.[3 marks](iv) the number of calculators that maximize profit.[4 marks]
- (b) Evaluate the following limits

(i)
$$\lim_{x \to 3} \frac{x^2 + 3x + 9}{x + 3}$$
. [3 marks]
(ii) $\lim_{x \to 3} \frac{x^3 - x^2 - x}{x + 3}$.

(ii)
$$\lim_{x \to 0} \frac{15 - 7x + x^3}{x}$$
. [3 marks]

(iii)
$$\lim_{x \to \infty} \frac{1}{15 + 14x - 2x^3}$$
. [5 mark

(c) Find the derivatives of the following functions

(i)
$$f(x) = \sqrt[3]{x} \cos(5x)$$
. [3 marks]

(ii)
$$f(x) = \left(\frac{x+1}{\ln x}\right)$$
 [3 marks]

QUESTION 2

(a) Evaluate the following integrals

(i)
$$\int \left(2x - \frac{1}{4x} + \sin(7x + 1)\right) dx.$$
 [3 marks]
(ii) $\int_{0}^{5} \frac{4x^{3} + 2x}{x^{4} + x^{2} - 4} dx.$ [5 marks]

(b) Find the area of the region bounded by the two curves $y = x^2$ and y = x + 2.[5 marks]

 $\mathbf{2}$

QUESTION 3

(a) Evaluate the following limits

(i)
$$\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x - 2}}$$
. [6 marks]
(ii) $\lim_{x \to -3} \frac{x^3 + 9x^2 + 26x + 24}{x + 3}$. [7 marks]

(b) State the three conditions which guarantee continuity of a function f(x) at the point x = c. Using these properties test whether the function

$$f(x) = \begin{cases} \frac{x^2 - 25}{5 - x}, & x \neq 5; \\ 9, & x = 5 \end{cases}$$

[7 marks]

is continuous at the point x = 5.

x + 3

QUESTION 4

Find the derivative of the following functions

(a)	$f(x) = 2^{\cos x}.$	[5 marks]
(b)	$f(x) = \ln[(x^2 + 4)(x - 4)].$	[5 marks]
(c)	$f(x) = \left(rac{x^2 + x}{x} ight)^4.$	[5 marks]
(d)	$f(x) = e^{3x} \ln(x^3 + 1).$	[5 marks]

QUESTION 5

(a) Given the function

 $y = 2x^3 - 15x^2 + 36x - 10,$

find the

(i)	local maximum.	[2 marks]
(ii)	local minimum.	[2 marks]
(b) Find	the intervals where the curve is	
(i)	increasing.	[2 marks]
(ii)	decreasing.	[2 marks]
(iii)	concave up.	[3 marks]
(iv)	concave down.	[3 marks]

3

- (c) What is a point of inflection? Using this definition find the inflection point for the function f(x). [2 marks]
- (d) Use all the information obtained in (a) (c) to sketch the graph of the function. [4 marks

QUESTION 6

(a) Given the demand function D(x) and the supply function S(x)

$$D(x) = 60 - \frac{x^2}{10}, \qquad S(x) = 30 - \frac{63x}{10} + \frac{x^2}{5}$$

find the

- [2 marks] (i) equilibrium quantity (ii) consumer surplus [5 marks] [5 marks]
- (ii) producer surplus,
- (b) Find the slope and equation of the tangent line to the graph of

$$f(x) = xe^{x^2 - 1}$$

at x = 1.

QUESTION 7

(a) Evaluate the following integrals

(i)
$$\int (x+3) \cos x dx$$
 [5 marks]
(ii) $\int_{0}^{5} \frac{x+2}{x^2-5x+6} dx$. [5 marks]

(b) A company manufactures x carts per month. If the monthly cost and price-demand functions are given by

$$C(x) = \frac{x^2}{100} + \frac{x}{2} + 8, \quad p(x) = -\frac{x}{200} + 1.$$

Find the following, for each month.

(i)	Average profit function.	[2 marks]
(ii)	Find the marginal average cost function.	[4 marks]
(iii)	Find the marginal average profit function.	[4 marks]

4

[8 marks]