University of Swaziland

Final Examination December, 2016

B.A.S.S I

Title of Paper	:	Elementary	Quantitative	Techniques I	L

Course Number : MAT101

<u>Time Allowed</u> : Three (3) Hours

Instructions

- 1. This paper consists of TWO sections.
 - a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
 - b. SECTION B: 60 MARKS
 Answer ANY THREE questions.

 Submit solutions to ONLY THREE questions in Section B.
- 2. Show all your working.
- 3. Start each question on a fresh page.
- 4. Non programmable calculators may be used (unless otherwise stated).
- 5. A formula sheet is provided on the last page.
- 6. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

SECTION A

Answer ALL questions from section A.

A1. (a) Simplify:

i.
$$\frac{3}{y+3} + \frac{2}{y+5}$$
, [5]

ii.
$$5 - \frac{x-1}{7x}$$
, [5]

iii.
$$\frac{x^2 + 2x - 3}{x^2 + 5x - 6}$$
. [8]

(b) Consider the matrices
$$M = \begin{pmatrix} 3 & -2 \\ 2 & 4 \end{pmatrix}$$
 and $N = \begin{pmatrix} 4 & 6 \\ -1 & 5 \end{pmatrix}$. Find
i. $-3M^T$, [3]

ii.
$$N^T - M$$
. [3]

(c) i. Use a calculator to compute
$$20C_5$$
, [2]

ii. Factorize completely $2t^2 - 72$. [3]

(d) i. Solve the simultaneous equations

$$3x - 2y = 5,$$

$$4x + 5y = -24.$$

[6]

ii. Use the quadratic formula to solve $5x^2 = 20x - 4$. (Give your answer correct to 1 d.p.) [5]

 $\mathbf{2}$

SECTION B

Answer any THREE questions from section B.

B2.	(a) Consider the AP	
	$5, 2, -1, -4, \ldots,$	
	i. Write down the next two terms.	[2]
	ii. Find a formula for the n th term.	[3]
	iii. Use the formula in ii. to find the 81^{st} term.	[2]
	iv. Find the sum of the first 40 terms.	[4]
	(b) Find the value of	
	i. $1 + 2 + 4 + 8 + \dots + 16384$.	[5]
	ii. $\sum_{n=1}^{40} 4n$.	[4]
DЭ	(a) Clausidau the matrices	

B3. (a) Consider the matrices

$$A = \begin{pmatrix} -1 & 3 \\ 4 & 2 \end{pmatrix}, B = \begin{pmatrix} 5 & -1 \\ 1 & 3 \\ 5 & -4 \end{pmatrix}, C = \begin{pmatrix} 4 & 1 & 3 \\ -2 & -1 & 8 \end{pmatrix}.$$

Find (where possible);

i. |A|, [2]

ii. AB^T , [3]

(b) Use Cramer's rule to solve the following linear system of equations.

B4. (a) Expand and simplify term by term
$$\left(x - \frac{3}{x^2}\right)^5$$
. [8]

- (b) Find the 11th term in the binomial expansion of $\left(\frac{2}{x} + x\right)^{15}$. [6]
- (c) Simplify and leave your answers in terms of positive indices.

i.
$$\left(\frac{C^{-3}}{3}\right)^2$$
. [2]

ii.
$$\frac{10m^4n^{-3}}{m^{-1}} \times \frac{2m^2n}{5n}$$
. [4]

B5. (a) Consider the straight line, H given by 18x + 3y = -10. i. State the *y*-intercept of H. [3]

- ii. State the gradient (slope) of H. [3]
- iii. Find the equation of a line parallel to H, passing through the point (-2, 1). [4]

(b) Use synthetic division to work out
$$\frac{x^3 - x^2 - 5x + 1}{x + 2}$$
. [6]

(c) Given that x - 2 is a factor of $x^3 + Bx^2 - 5x + 4$, find the value of B. [4]

- **B6.** (a) Express as a single logarithm $\log_3(x+4) \log_3(2x)$. [2]
 - (b) Express in terms of logarithms $3^{-4} = \frac{1}{81}$. [3]
 - (c) Solve for x in each of the following. i. $2^{x-5} = 512$. [3]

ii.
$$\log_2 x + \log_2(x-2) = 3.$$
 [5]

(d) The population of a city grows according to the formula

$$p(t) = 60000e^{0.028t},$$

where t is the number of years from year 2000. Find

- i. the population in 2012. [2]
- ii. the year when the population will reach 100000. [5]

END OF EXAMINATION

Formula Sheet

Arithmetic Progressions:

 $T_n = T_1 + (n-1)d, \quad S_n = \frac{n}{2}[T_1 + T_n], \quad S_n = \frac{n}{2}[2T_1 + (n-1)d].$ Geometric Progressions:

$$T_n = T_1 r^{n-1}, \quad S_n = \frac{T_1(1-r^n)}{1-r}.$$

Binomial Theorem:

$$(a+b)^n = a^n + nC_1a^{n-1}b + nC_2a^{n-2}b^2 + nC_3a^{n-3}b^3 + \dots + b^n.$$

rth term of $(a+b)^n = nC_{r-1}a^{n-r+1}b^{r-1}.$

Matrices:

.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

logarithms and Exponential Functions:

$$\log_b x = y \Leftrightarrow x = b^y.$$

$$\log_b(AB) = \log_b A + \log_b B.$$

$$\log_b \left(\frac{A}{B}\right) = \log_b A - \log_b B.$$

$$\log_b A^n = n \log_b A.$$

The Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$