UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, JULY 2017

BA in Social Sciences I

Title of Paper : Elementary Quantitative Techniques II

Course Number : MAT102

Time Allowed : Two (2) Hours

Instructions

- 1. This paper consists of SEVEN (7) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 50%. Answer ALL questions in this section.
- Section B consists of FOUR questions, each worth 25%. Answer ANY TWO
 (2) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B7) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A

Answer ALL Questions in this section

QUESTION A1

a . Evaluate

i.
$$\lim_{x \to -2} (3x^2 + 6x - 7)$$
 [2]
ii. $\lim_{x \to 1} \left(\frac{1+x}{(2x-5)^2} \right)$ [2]
iii. $\lim_{x \to -1} \left(\frac{x^2 - 1}{x+1} \right)$ [3]
iv. $\lim_{x \to -\infty} \left(\frac{2x^2 - 3}{4 - 5x^2} \right)$ [4]

QUESTION A2

a. State the *limit definition* of the derivative of the function f(x). [2]

b. Use the limit definition to find $\frac{df}{dx}$ given

$$f(x) = 3x^2 - 2x$$

[7]

c. Find y' if i. $y = \frac{2}{3}x^6 - 7x^4 - 8$ [2] ii. $y = 2X^{\frac{1}{5}} + X^{-\frac{6}{5}}$ [3] iii. $y = 5t^2 - \frac{4}{\sqrt{t}}$ [3] iv. $y = e^{3x+2}$ [2] v. $y = \ln(3-5x)$ [3]

[3]

QUESTION A3

.

- a. State the Fundamental Theorem of Calculus.
- b. Integrate

i. $\int_{-1}^{2} (4x - 8x^2) dx$	[5]
ii. $\int \left(2X^{\frac{1}{2}}+\frac{3}{X}\right)dX$	[3]
iii. $\int \left(\frac{12}{x^3} - \frac{20}{x^7}\right) dx$	[3]
$\mathbf{iv.} \int e^{\frac{-1}{3}x} dx$	[3]

Section B

Answer and 2 Questions in this section

QUESTION B4

a. Find the value of the limit of $\lim_{x \to -2} \frac{x^2 - x - 6}{x^2 + 3x + 2}$

b. Find the derivative

i. y' for $y = (x - x^3)^5$	[3]
ii. y' for $y = (5x + 7)e^{-3x}$	[4]
iii. y' for $y = \frac{1 - t^2}{5 + t^3}$	[6]
iv. y''' for $y = 4x + \frac{3}{x}$	[5]

[7]

QUESTION B5

•

a.	a. Consider the function					
		$y = x^2 - 4x + 3$				
	i.	Find the <i>stationary</i> $point(s)$ and classify them as relative maxima or minima.	[10]			
	ii.	Find the <i>y</i> -intercept.	[2]			
	iii.	Make a neat sketch of the graph of y .	[4]			
b.	b. The profit P of a company is given by $P(x) = \frac{75\pi}{2} = 0.02 \frac{2}{3} = 5400$					
		$P(x) = 75x - 0.03x^2 - 5400,$				
	i.f	ind the profit if the monthly sales stand at 200 units.	[3]			

ii. find the number of units that maximises the profit. Hence find the maximum profit. [6]

QUESTION B6

a. By first making the substitution $u = 3 - x^2$, evaluate the integral

$$\int 8x \left(3 - x^2\right)^{-2} dx.$$

[10]

[15]

[12]

[7]

[6]

b. Use the method of partial fractions to integrate

$$\int \frac{3x-2}{x(x-2)} \, dx.$$

QUESTION B7

a. Use the method of tabular integration to evaluate

b. i. Evaluate

$$\int_0^1 \left(\frac{2}{3\sqrt{x}} + x^{3/2} + 6\right) dx$$

 $\int 12x^2 e^{2x} \, dx.$

ii. Find the area of the shaded region in the figure below

END OF EXAMINATION PAPER