University of Swaziland

EXAMINATION, 2016/2017

BASS II, B.Ed (Sec.) II, B.Sc. II

Title of Paper

: Foundations of Mathematics

Course Number : MAT231/M231

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.

Special Requirements: NONE

This examination paper should not be opened until per-MISSION HAS BEEN GIVEN BY THE INVIGILATOR.

(2

(2

(4

(3

(2)

(2)

(2)

(2)

(3)

(5)

(2)

(2)

(2)

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

- (a) Define each of the following.
 - i. A proposition.
 - ii. A tautology.
 - iii. A *relation* from a set *A* into a set *B*.
 - iv. An *equivalence* relation on a set *A*.
 - v. A function from a set A into a set B.
 - vi. A *one-to-one* function $f: A \rightarrow B$.
- (b) Consider the statement:

"If it is raining today, then Sipho is wearing gumboots."

- i. Write down (in English) the inverse of the statement.
- ii. Write down (in English) the converse of the statement.
- iii. Write down (in English) the contrapositive of the statement.
- (c) State the Generalized Principle of Mathematical Induction.
- (d) Write down the negation of each of the following statements.

i.
$$(\exists x \in \mathbb{R})(x^2 = 2)$$
.

ii.
$$(\forall x \in \mathbb{Q})(\exists p \in \mathbb{Z})(\exists q \in \mathbb{Z})(x = p/q).$$

- (e) Show that $p \land \neg (p \rightarrow q) \equiv p \land \neg q$.
- (f) Consider the following predicates.

$$p(x): x > -1$$

 $q(x): x \in \{0,1,2\}.$

Determine the truth values of the following propositions.

i.
$$p(-1) \to q(1)$$
.

ii.
$$p(1) \land \neg p(-1)$$
.

iii.
$$\neg (p(2) \lor q(2))$$
.

(2)

(2)

(5)

(5)

(4)

(7)

(7)

(3)

(3)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

(a) Consider the predicate

$$p(x,y): x \neq y.$$

Determine the truth values of the following propositions.

i.
$$(\exists x \in \mathbb{R})(\exists y \in \mathbb{R})p(x,y)$$
.

ii.
$$(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})p(x,y)$$
.

iii.
$$(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})p(x,y)$$
.

(b) Let p(x,y) and q(x,y) be predicates. Prove

$$\neg [(\forall x)(\forall y)(p(x,y) \to q(x,y))] \equiv (\exists x)(\exists y)(p(x,y) \land \neg q(x,y))$$

(c) Determine whether the following argument is valid or invalid.

$$p \rightarrow q$$

$$q \rightarrow p$$

$$\therefore p \vee q.$$

(d) Prove

$$p \to q \equiv \neg q \to \neg p.$$

QUESTION B3 [20 Marks]

- (a) Prove: For every integer x, x^2 is even if and only if x is even.
- (b) Prove: The number $\sqrt{2}$ is irrational.
- (c) Let $a \neq 0$, $b \neq 0$ and c be integers. Prove:

i. If
$$a \mid b$$
 and $a \mid c$, then $a \mid (b + c)$.

ii. If
$$a \mid b$$
 and $b \mid c$, then $a \mid c$.

TURN OVER

PAGE 3

(4)

(6)

(2)

(3)

(2,

(5)

(7)

(2)

(6)

(6)

(6)

(4)

(4)

QUESTION B4 [20 Marks]

(a) Let A and B be sets in a universal set U. Prove each of the following.

i. If
$$A \subseteq B$$
, then $A \cup B = B$

ii.
$$(A \cap B)^c = A^c \cup B^c$$
.

- (b) i. Define a *partition* of a set *A*.
 - ii. Let $A = \{1, 2, 3, 4, 5, 6\}$, $A_1 = \{1\}$, $A_2 = \{2, 3\}$, $A_3 = \{4, 5, 6\}$. Show that $\{A_1, A_2, A_3\}$ is a partition of A.
- (c) Let $B = \{1,2\}$ and $C = \{3,4\}$. Find

i. $\mathscr{P}(B)$.

ii. $\mathscr{P}(B \cap C)$.

QUESTION B5 [20 Marks]

- (a) Let $X = \mathbb{Z}^+$ be the set of non-negative integers and define a relation R on *X* by mRn if and only if $m \mid n$. Prove that *R* is antisymmetric.
- (b) Define a relation \sim on \mathbb{Z} by $m \sim n$ if and only if $m \equiv n \pmod{2}$.
 - i. Show that \sim is an equivalence relation on \mathbb{Z} .
 - ii. List the equivalence classes of \mathbb{Z} given by \sim .
- (c) Let \mathscr{A} be a collection of sets. Let R be the relation on \mathscr{A} defined by $(A,B) \in R$ if and only if $A \subseteq B$. Show that \mathscr{A} with this relation is a poset.

QUESTION B6 [20 Marks]

- (a) Let $f(n) = 3^{2n} + 7$. Use mathematical induction to prove that f(n) is divisible by 8 for all integers $n \ge 0$.
- (b) Use strong induction to prove: Any integer n > 1 can be written as a product of prime numbers.
- i. Prove that the composition of two injective functions is also injective.
 - ii. Prove that the composition of two surjective functions is also surjective.