UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER 2012

TITLE OF PAPER	: QUANTITATIVE METHODS IN DEMOGRAPHY
COURSE CODE	: DEM206
TIME ALLOWED	: TWO (2) HOURS
REQUIREMENTS	: CALCULATOR AND STATISTICAL TABLES
INSTRUCTIONS	: ANSWER ANY THREE QUESTIONS

Question 1

[20 marks, $10+5+5$]

(a) Many people believe that criminals who plead tend to get lighter sentences than those who are convicted in trials. The accompanying table summarises randomly selected sample data for Manzini defendants in burglary cases. All the subjects had prior prison sentences. At the 0.05 significance level, test the claim that the sentence (sent to prison or not sent to prison) is independent of plea. If you were an attorney defending a guilty defendant, would these results suggest that you should encourage a guilty plea?

	Guilty Plea	Not Guilty Plea
Sent to prison	392	58
Not sent to prison	564	14

(b) A husband and wife are each 70 years old. The probability that the husband will die sometimes this year is 0.10 , and the probability that the wife will die this year is 0.05 . The probability that the husband will die this year given that his wife has died is 0.40 .
(i) What is the probability that at least one of them will die this year?
(ii) What is the probability that the wife will die, given that the husband has died?

Question 2

[20 marks, 8+4+8]
The following table shows a random sample of 12 couples who stated the number of children they planned to have at the time of their marriage and the number of actual children they have.

Couple	1	2	3	4	5	6	7	8	9	10	11	12
Planned Number of Children	3	3	0	2	2	3	0	3	2	1	3	2
Actual Number of Children	4	3	0	4	4	3	0	4	3	1	3	1

(a) Find the linear least-squares regression line of y on x.
(b) Estimate the number of children that a couple who had planned to have 5 children actually had?
(c) Is the relationship between the planned number of children and the actual number of children meaningful (or significant)? Use $\alpha=0.05$.

Question 3

(a) The following table gives a summary of the birth weights (in kilograms) recorded for a sample of male babies born to mothers taking a special vitamin supplement.

\bar{x}	3.675
s_{x}	0.6573177821
n	32

Test the claim that the mean birth weight for all male babies born of mothers given vitamins is equal to 3.39 kg , which is the mean for the population of all males
(b) Swazi Airlink works only with advance reservations and experiences a 7% rate of no shows. How many reservations could be accepted with a capacity of 50 if there is at least a 0.95 probability that all reservations who show will be accommodated?
(c) Several women are not hired at the Telecoms Company, they do some research and find that among the many people who applied, 30% were women. However, the 20 people who were hired consist of only 2 women and 18 men. Find the probability of randomly selecting 20 people from a large pool of applicants (30% of whom are women) and getting 2 or fewer women. Based on the results, does it appear that the company is discriminating based on gender?

Question 4

[20 marks, 10+10]

(a) In a first phase of a health study in a city, a random sample of size 2000 is to be obtained. The city is comprised (broadly) of five different ethnic subpopulations that make up $40 \%, 30 \%, 10 \%, 10 \%$ and 10% of the city population respectively.
A commercial company is employed to obtain the random sample, with the instruction that the sample should reflect the ethnic composition of the city. The sample they return is summarized in the following table.

	Ethnic Subpopulation				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Number in Sample	822	638	210	157	173

Using a Chi-squared test for this one-way layout, comment on whether the company have fulfilled their remit to produce a sample that reflects the ethnic composition of the city.
(b) The listed values are waiting times (in minutes) of customers at a Manzini Bank, where customers enter a single line that feed two teller windows. Assuming the waiting times are normally distributed, construct a 95% confidence interval for the population mean μ.

$\begin{array}{llllllllll}6.5 & 6.6 & 6.7 & 6.8 & 7.1 & 7.3 & 7.4 & 7.7 & 7.7 & 7.7\end{array}$

Question 5

(a) In an experimental study of nutrition, laboratory animals were allocated at random to one of four different diets, A, B, C and \mathbf{D}. The response measurement was the weight gain (in grammes) of each animal over one week.
The data recorded are tabulated below; entries in the rows of the table are the weight gains for animals allocated to each diet.

Diet							
A	0.54	1.98	0.65	0.52	1.92	1.48	0.97
B	1.24	1.82	1.39	1.25	1.29		
C	2.05	2.18	1.94	2.50	1.98	2.17	1.83
D	1.88	6.23	3.51	3.77	1.25	0.72	

Using the data, an ANOVA analysis is to be carried out. Write out the ANOVA table in full. State clearly the null and alternative hypothesis, the test statistic, the null distribution, and the conclusion.
(b) Estimate the probability of getting at least 65 girls in 100 births if the sex ratio is 105 girls to a 100 boys.
(c) Explain the difference between a parameter and statistic, and the difference between sampling error and non-sampling error in full.

Cumulative Standaralized Normal Disatibution										
							$A(z)$ is the integral of the standardized nomal distribution from - -0 to z (in other words, the area under the curve to the left of z). It gives the probability of a normal random variable not being more than z standard deviations above its mean. Values of z of particular importance:			rdized nomal her words, the f). It gives th variable not ations above importance: \qquad ight 2.5 然 at ight 1 $6 / 6$ zen $38 \mathrm{my} 0.93 \%$ tain
:	0.00	0.04	0.02	0.03	0.4	0.05	0.06	0.07	0.08	0.08
0	${ }^{0.5050}$	${ }^{0.5300}$	${ }^{0.35880}$	${ }^{0.5120}$	0.3160					
0.1	${ }_{\substack{0.3998 \\ 0.993}}^{0.69}$	${ }_{0}^{0.5838}$	0.4478 0.5871	${ }_{0}^{0.5917}$	${ }_{0}^{0.5947}$	${ }_{0}^{0.5989}$	${ }_{0}^{0.6536}$	${ }^{0.6069}$	${ }_{0}^{0.314}$	${ }_{0}^{0.6141}$
0.3	0.6179	0.637	0.625	${ }_{16293}^{4654}$	${ }^{0.5331}$	${ }^{0.65388}$	${ }^{0.6496}$	${ }^{0.6543}$	0.0 .680	
0.9	0.095	0.6950	${ }^{0.6988}$	0.7019	0.7034	0.7088	0.723	0.715	0.710	0.7224
${ }_{0}^{0.7}$	${ }_{0}^{0.7257}$	${ }_{0}^{0.7291}$	${ }_{0}^{0.7344}$	${ }^{0.73573}$	${ }^{0}$	${ }^{0.7742}$	${ }^{0.7344}$	${ }^{0.7786}$	${ }_{\substack{0}}^{0.7517}$	${ }^{0.7889}$
0.8	${ }^{0.7881}$	${ }^{0.7910}$	${ }^{0.7899}$	0.7367	0.7993	0.8823	${ }^{0} .8851$	0.8878	${ }^{0.8106}$	
1.0	${ }_{0.8413}^{0.819}$	${ }^{0.84888}$	${ }^{0.8461}$	${ }_{0}^{0.8485}$	${ }_{0}^{0.8508}$	${ }_{0} 0.8351$	0.8554	0.8577	0.8599	0:8521
1.1	${ }_{0}^{0.8843}$	${ }_{\substack{0.8865 \\ 0889}}$	${ }_{\substack{0.88888 \\ 0.888}}$	${ }_{\substack{0.8788 \\ 0.807}}$	${ }_{0}^{0.8829}$	${ }_{0}^{0.8944}$	${ }_{\substack{0.8862}}^{0.870}$	${ }^{0.89790}$	${ }_{\substack{0.8839 \\ 0.897}}^{0.939}$	cosien
1.3	0.9032	0.9549	0.9066	${ }^{0.3082}$	0.3099	0.9115	0.931	0.947	${ }^{0.9162}$	
1.4	0.9332	-0,934	0.9337	${ }_{0}^{0.9370}$	0.3882	0.9384	0.9806	0.9418	0.9429	$0 \cdot 9$
${ }_{1}^{1.7}$	${ }_{0}^{0.9435}$	${ }_{\substack{0.9463 \\ 0.964}}^{0.0}$	${ }_{\substack{0 \\ 0 \\ 0 \\ 0,973}}^{0.937}$	${ }_{\substack{0}}^{0.9384}$	${ }_{0}^{0.9398}$	${ }_{0}^{0.99599}$	-0,	${ }^{0.9923}$	${ }^{0.993525}$	${ }^{0.9543}$
1.8	0.9641	0.959	0.9986	0.9364	0.9871	0.9678	${ }^{0.8586}$	${ }^{0.9693}$	0.9699	
2.8	0.9772	${ }^{0.9778}$	${ }^{0.9783}$	${ }_{0}^{09788}$	0.973	${ }_{0}^{0.9798}$	${ }^{0} 0.98503$	${ }^{0.9878}$	${ }^{0}$	${ }^{0.9817}$
2.1	${ }_{0}^{0.9821}$	${ }^{0.9826}$	- $\begin{aligned} & 0.9830 \\ & 0.988 \\ & 0\end{aligned}$	${ }_{\substack{0}}^{\substack{09834 \\ 0.881}}$	${ }_{\substack{0 \\ 0.98788}}^{0.988}$	${ }_{\substack{0.9982 \\ 0.988}}$	${ }_{\substack{0 \\ 0.98881}}^{0.938}$	${ }_{\substack{0 \\ 0.9888}}^{\substack{\text { 983 }}}$	${ }_{\substack{0.98387}}^{0.988}$	${ }_{0}^{0.988}$
2.3	0.9893	${ }^{0.9896}$	${ }^{0.98988}$	${ }^{0} 0.9901$	0	${ }^{0.9996}$	- 0.9509	0.091	${ }^{0} 0$	
${ }_{2}^{2,5}$	${ }_{0}^{0.9938}$	-	0.994	0	0	-	${ }_{0}^{0.9948}$	${ }^{0.9949}$	${ }^{\text {a,9931 }}$	${ }^{0}$
2.6	${ }_{0}^{0.9933}$	${ }_{\text {a }}^{0.99956}$	${ }^{0.9996}$	-	${ }_{\substack{0 \\ 0.95399}}^{0.095}$	-	${ }_{0}^{0.9961}$	${ }^{0.9992}$	${ }^{0.9293}$	${ }_{\substack{0 \\ 0.9974}}^{0.9964}$
28	0.9974	0.9975	0.9996	${ }^{0.9997}$	${ }^{0.9977}$	${ }^{0.9978}$	- 0	0.9979	${ }^{0}$	0.9
3.0	0.0987	0.9987	${ }^{0.9987}$	0.9988	${ }_{0}^{0.9988}$	0.9989	0.9989	0.9989	0.9990	0.99
3.1	${ }^{0.9990}$	${ }^{0.99991}$	0.9991	${ }^{\text {a }}$	-	${ }^{\text {a,g992 }}$	$c099920994$	${ }^{\text {a }}$	${ }_{0}^{0.9993}$	${ }_{0}^{0}$
1.3	0.9993	0.9993	0.9995	0.9996	0.9995	${ }^{\text {0.9996 }}$	${ }^{0.9996}$	0.9996	0	${ }^{0.9997}$
3.3	${ }_{0}^{0.99998}$	${ }_{0}^{0.99998}$		${ }^{0.9998}$	${ }_{0}^{0.99998}$		09988	${ }^{0.9998}$	${ }^{0.9998}$	
3.6	0.9998									

Percentage Points of the t-Distribution

This table ivies the percentage pointst $t_{1}(P)$ dom ν, as indicated by the figure to the tight. The lower percentage points are given by symmetry ns $-t_{\nu}(P)$, and the probability that tit $\geq t_{s}(P)$ is $2 P / 100$. The limiting distribution of t as, $\rightarrow \infty$ is the nermal distribution with zero mean and unit variance.							
				centage	points P		
ν	10	5	2.5	1	0.5	0.1	
1	3.078	6.314	12.706	31.821	${ }^{63.657}$	318.808	636.61
2	1.886	2.920	4.303	${ }^{6.965}$	9.925	22.327	
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	1.533	2.132	2.776	3.747	4.004	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.40	1.943	2.447	${ }^{3.143}$	${ }^{3.707}$	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.40
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
8	1.383	1.833	2.262	2.821	${ }^{3.250}$	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	${ }^{3.106}$	4.025	4.437
12	1.356	1.782	2.179	2.881	3.055	3.930	4.318
13	1.350	1.71	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.802	2.947	${ }^{3.733}$	4.073
10	1.337	1.746	2.120	2.583	2.921	3.686	4.015
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
21	1.323	1.721	2.080	2.518	2.831	${ }^{3.527}$	3.819
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.393	1.684	2.021	${ }^{2.423}$	2.704	3,307	3.551
50	1.299	1.676	2.009	2.403	2.678	3.261	3.496
70	1.294	1.667	1.994	2.381	${ }^{2.648}$	${ }^{3.211}$	3.435
100	1.290	1.660	1.984	${ }_{2}^{2.364}$	${ }_{2}^{2.625}$	3.174 3090	3.390
			1.960	2.326	2.576	3.090	3.291

ν_{2}									
	1	2	3	4	5	θ	12	24	∞
2	18.513	19.000	19.164	19.247	19.296	19.330	19.413	19.454	19.496
3	10.128	9.552	9.277	9.117	9.013	8.941	8.745	8.639	8.526
4	7.709	6.944	6.591	6.388	6. 225	0.163	5.912	5.774	5.628
5	6. 608	5.786	5.409	5.192	5.050	4.950	4.678	4.527	4.365
6	5.987	5.143	4.757	4.534	4.387	4.284	4.000	3.841	3.669
7	5.591	4.737	4.347	4.120	3.972	3.866	3.575	3.410	3.230
8	5.318	4.459	4.066	3.838	3.687	3.581	3.284	3.115	2.928
9	5.117	4.256	${ }^{3.863}$	3.633	3.482	3.374	3.073	2.900	2.707
10	4.965	4.103	3.708	3.478	3.326	3.217	2.913	2.737	2.538
11	4.844	3.982	3.587	3.357	3.204	3.095	2.788	2.609	2.404
12	4.747	3.885	3.490	3.259	3.106	2.996	2.687	2.505	${ }^{2.296}$
13	4.667	3.806	3.411	3.179	3.025	2.915	2.604	2.420	${ }^{2.206}$
14	4.600	3.739	3.344	3.112	2.958	2.848	2.534	2.349	2.131
15	4.543	3.682	3.287	3.056	2.901	2.790	2.475	2.288	2.066
16	4.494	3.634	3.239	3.007	2.852	2.741	2.425	2.235	2.1010
17	4.451	3.592	3.197	2.965	2.810	2.699	2.381	2.190	1.960
18	4.414	3.555	3.160	2.928	2.773	2.661	2.342	2.150	1.917
19	4.381	3.522	3.127	2.895	2.740	2.628	2338	2.114	1.878
20	4.351	3.493	3.098	2.866	2.711	2.599	2.278	2.082	1.843
25	4.242	3.385	2.991	2.759	2.603	2.490	2.165	1.964	1.711
30	4.171	${ }^{3.316}$	2.922	2.659	2.534	2.421	2.092	1.887	1.622
40	4.085	3.232	2.839	2.606	2.449	2.336	2.003	1.793	1.509
50	4.034	${ }^{3.183}$	2.790	2.557	2.400	2.286	1.952	1.737	1.438
100	3.936	3.887	2.696	2.463	2.305	2.191	1.850	1.627	1.283
∞	3.841	2.996	2.605	2.372	2.214	2.099	1.752	1.51	1.002

