UNIVERSITY OF SWAZILAND

7

SUPPLEMENTARY EXAMINATION PAPER 2012

TITLE OF PAPER	:	QUANTITATIVE METHODS IN DEMOGRAPHY
COURSE CODE	:	DEM206
TIME ALLOWED	:	TWO (2) HOURS
REQUIREMENTS	:	CALCULATOR AND STATISTICAL TABLES
INSTRUCTIONS	:	ANSWER ANY THREE (3) QUESTIONS

1

.

Question 1

[20 marks, 5+5+5+5]

The length of human pregnancies is normally distributed with mean $\mu = 266$ days and standard deviation $\sigma = 16$ days.

- (a) What is the percentage of pregnancies that last more than 270days?
- (b) A "very preterm" baby is one where the gestation period is less than 244days. What proportion of births are "very preterm"?
- (c) Suppose an unusually long pregnancy is one that is in the top 2%. Determine the length of pregnancy that an separates unusually long pregnancy from one that is not unusually long.
- (d) Determine the length of pregnancy that would be considered typical if we define typical to be the middle 96% of pregnancies.

Question 2

[20 marks, 8+4+8]

- (a) A credit bureau conducts an analysis of 500 randomly selected time payment accounts of persons residing in Weston and finds that 45 of them were delinquent at one time or another. A similar study conducted in the town of Easton, where 600 randomly selected accounts were analyzed, finds 36 of the accounts were delinquent at one time or another. Use the level of significance $\alpha = 0.05$ to determine whether the proportion of delinquencies in Weston is higher than in Easton.
- (b) Music Technologies, an electronics retail company in Durban has kept records of the number of ipods sold within a week of placing advertisements in the *Mercury*. The following table shows the number of ipods sold and the corresponding number of advertisements placed in the *Mercury* for 12 randomly selected weeks over the past year.

Ads	4	4	3	2	5	2	4	3	5	5	3	4
Sales	26	28	24	18	35	24	36	25	31	37	30	32

- (i) Estimate the linear regression line ($\sum x = 44$, $\sum y = 346$, $\sum x^2 = 174$, $\sum xy = 1324$ and $\sum y^2 = 10336$).
- (ii) Is the *relationship* between the number of *newspaper advertisements* placed and *ipod sales* meaningful (or significant)? Use $\alpha = 0.05$.

Question 3

[20 marks, 10+10]

(a) Management at Woolworths' head office wanted to know whether the proportion of their credit card customers who pay for their purchases by *Mastercard credit card* varies across their three major retail outlets (that is, Canal Walk, Sandton Mall, Somerset Mall).

A random sample of 180 credit card purchases across the three retail outlets was selected and the number of Mastercard credit card transactions per store was recorded. Out of 52 credit card purchases in Canal Walk, 36 used a Mastercard credit card; out of 84 transaction in Sandton mall, 44 used the Mastercard; out of 44 transactions in Somerset Mall, the Mastercard was used 26 times. Use $\alpha = 0.05$.

(b) The production manager of Raylite batteries, a car battery manufacturer, wants to know whether the three machines used for this process (labelled A, B and C) produce equal amount of rejects. A random sample of shifts for each machine was selected and the number of rejects produced per shift was recorded.

Machine A	Machine B	Machine C
11	7	14
9	10	13
6	8	11
12	13	16
14		16
11		

Question 4

[20 marks, 10+5+5]

A short-stay car park in a shopping area has spaces marked out for 90 cars. A local councillor notices that there are always some vacant spaces. He puts forward a plan to create a garden and seating area using part of the car park. This would reduce the number of parking spaces to 78.

- (a) From a random sample of 14 users of the car park, 11 say that the car park will be too small if this plan is carried out. Carry out a test, at the 5% significance level, to determine whether more than half of the users of the car park think it will be too small.
- (b) The number of occupied spaces, x, in the car park is recorded on each of 16 randomly chosen occasions during shopping hours. The results may be summarised as follows:

$$\bar{x} = 59.9$$
 $s = 7.83$

Construct a 95% confidence interval for the mean, μ , of the number of spaces occupied in the car park during shopping hours. Assume that the sample is drawn from a normal population.

(c) The councillor claims that the value of μ is no more than 65. It is found that the number of occupied spaces during shopping hours is best modelled by a Poisson distribution with mean μ . Taking μ to be 65, use a distributional approximation to find the probability that more than 78 spaces are occupied in the car park at any one time.

Question 5

[20 marks, 10+6+4]

Students on an environmental science course are investigating nitrate pollution in a river in an agricultural region. The level of pollution becomes a cause for concern when the mean concentration of nitrate exceeds 30 milligrams per litre of water.

The river is divided into a large number of sections of equal length.

(a) One student takes samples of water at 8 randomly chosen locations along one of these sections and analyses the samples for nitrate concentration. Her results, in milligrams of nitrate per litre of water, are

30 34 34 37 28 30 34 35

Carry out a test to investigate whether the nitrate pollution in this section of the river is a cause for concern. Assume that the data are drawn from a normal population, and use the 1% significance level.

- (b) The students carry out similar investigations to that in part (i) on 42 sections. Their tests indicate that the mean concentration of nitrate exceeds 30 milligrams per litre of water in 16 sections.
 - (i) Carry out a test, at the 1% significance level, to determine whether the level of nitrate concentration is a cause for concern in less than 60 per cent of sections of this river.
 - (ii) Construct the 95% confidence interval for the proportion of sections which are not polluted.

STATISTICAL TABLES

TABLE A.1

1

Cumulative Standardized Normal Distribution

ź	0.00	0.01	0.02	0.03	0,04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0,5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0,5596	0.5636	0,5675	0.5714	0.5753
0.2	0.5793	0,5832	0.5871	0.5910	0.5948	0,5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	(1.6879
0.5	0.6915	0.6950	0.6985	0.7019	0,7054	0,7088	0.7123	0.7157	0.7190	0 7224
).6	0.7257	0.7291	0 7324	0 7357	0.7389	0.7422	0,7454	0,7486	0.7517	0.7549
3.7	0.7580	0.7611	0.7642	0,7673	0,7704	0,7734	0.7764	0,7794	0.7823	0.7852
9,8	0,7881	0,7910	0 7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0,8133
J.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0,8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0 8907	0.8925	0.8944	0.8962	0,8980	0.8997	0.9015
1.3	0.9032	0.9049	0,9066	0 9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0,9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	(1.9332	0.9345	0,9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0,9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
.7	0.9554	0.9564	0.9573	0.9582	0,9591	0.9599	0.9608	0.9616	0,9625	0.9633
1,8	0,9641	0.9649	0.9656	0,9664	0,9671	0,9678	0,9686	0.9693	0,9699	0,9706
.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0,9761	0,9767
0.5	0.9772	0.9778	0.9783	0.9788	0.9793	0,9798	0,9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0,9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0,9887	0.9890
2.3	0.9893	0.9896	0,9898	0,9901	0.9904	0.9906	0.9909	0,9911	0.9913	0.9916
2.4	0,9918	0.9920	0,9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0,9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0,9953	0.9955	0.9956	0.9957	0,9959	0,9960	0.9961	0.9962	0.9963	0,9964
2.7	0.9965	0.9966	0,9967	0.9968	0.9969	0.9970	0.9971	0.9972	0,9973	0,9974
8.5	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0,9979	0,9980	0.9981
2.9	0,9981	0.9982	0,9982	0.9983	0,9984	0.9984	0.9985	0,9985	0.9986	0.9986
3,0	0.9987	0.9987	0,9987	0,9988	0.9988	0,9989	0,9989	0,9989	0.9990	0,9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0,9992	0.9993	0,9993
3.2	0.9993	0.9993	0,9994	0.9994	0,9994	0,9994	0.9994	0,9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9993	0,9996	0,9996	0.9996	0.9996	0.9996	0,9996	0.9997
3.4	0.9997	0.9997	0.9997	0,9997	0.9997	0,9997	0,9997	0.9997	0.9997	0,9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0,9998
16	0 9998	0 9498	0 9999							

Percentage Points of the t-Distribution

This table gives the percentage points $t_{\nu}(P)$ for various values of P and degrees of freedom ν , as indicated by the figure to the right. The lower percentage points are given

by symmetry as $-t_{\nu}(P)$, and the probability that $|t| \ge t_{\nu}(P)$ is 2P/100. The limiting distribution of t as $\nu \to \infty$

is the normal distribution with zero mean and unit variance.

Percentage points P

ν	10	5	2.5	1	0.5	0.1	0.05
1	3.078	6.314	12.706	31.821	63.657	318.309	636.619
2	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
	1						
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
50	1.299	1.676	2.009	2.403	2.678	3.261	3.496
70	1.294	1.667	1.994	2.381	2.648	3.211	3.435
100	1.290	1.660	1.984	2.364	2.626	3.174	3.390
00	1.282	1.645	1.960	2.326	2.576	3.090	3.291

б

Percentage Points of the χ^2 -Distribution

	Percentage points P									
ν	10	5	2.5	1	0.5	0.1	0.05			
1	2.706	3.841	5.024	6.635	7.879	10.828	12.116			
2	4.605	5.991	7.378	9.210	10.597	13.816	15.202			
3	6.251	7.815	9.348	11.345	12.838	16.266	17.730			
4	7.779	9.488	11.143	13.277	14.860	18.467	19.997			
5	9.236	11.070	12.833	15.086	16.750	20.515	22.105			
6	10.645	12.592	14.449	16.812	18.548	22.458	24.103			
7	12.017	14.067	16.013	18.475	20.278	24.322	26.018			
8	13.362	15.507	17.535	20.090	21.955	26.124	27.868			
9	14.684	16.919	19.023	21.666	23.589	27.877	29.666			
10	15.987	18.307	20.483	23.209	25.188	29.588	31.420			
11	17.275	19.675	21.920	24.725	26.757	31.264	33,137			
12	18,549	21.026	23.337	26.217	28.300	32,909	34.821			
13	19.812	22.362	24.736	27.688	29.819	34.528	36.478			
14	21.064	23.685	26.119	29.141	31.319	36.123	38.109			
15	22.307	24.996	27.488	30.578	32.801	37.697	39.719			
16	22542	200 200	28 845	42.000	24 267	20.252	41.308			
17	20.042	20.200	36.101	33 400	35 718	40 700	42 870			
18	25.080	28,860	31 596	34,805	37 156	42 212	44 434			
19	27 204	30 144	32 852	36 191	38 582	43 820	45 973			
20	28.412	31.410	34.170	37.566	39.997	45.315	47.498			
25	34.382	37.652	40.646	44.314	46.928	52.620	54.947			
30	40.256	43.773	46.979	50.892	53.672	59.703	62.162			
40	51.805	\$5.758	59.342	63.691	66.766	73.402	76.095			
50	63.167	67.505	71.420	76.154	79.490	86.661	89.561			
80	96.578	101.879	106.629	112.329	116.321	124.839	128.261			

 4

5 Percent Points of the F-Distribution

.

					ν,				
P2	1	2	3	4	5	6	12	24	00
2	18.513	19.000	19.164	19.247	19.296	19.330	19.413	19.454	19.496
3	10.128	9.552	9.277	9.117	9.013	8.941	8.745	8.639	8.526
4	7.709	6.944	6.591	6.388	6.256	6.163	5.912	5.774	5.628
5	6.608	5.786	5.409	5.192	5.050	4.950	4.678	4.527	4.365
6	5.987	5.143	4.757	4.534	4.387	4.284	4.000	3.841	3.669
7	5,591	4.737	4.347	4.120	3.972	3.866	3.575	3.410	3.230
8	5.318	4.459	4.066	3.838	3.687	3.581	3.284	3.115	2.928
9	5.117	4.256	3.863	3.633	3.482	3.374	3.073	2.900	2.707
10	4.965	4.103	3.708	3.478	3.326	3.217	2.913	2.737	2.538
11	4.844	3.982	3.587	3.357	3.204	3.095	2.788	2.609	2.404
12	4.747	3.885	3.490	3.259	3.106	2.996	2.687	2.505	2.296
13	4.667	3.806	3.411	3.179	3.025	2.915	2.604	2.420	2.206
14	4.600	3.739	3.344	3.112	2.958	2.848	2.534	2.349	2.131
15	4.543	3.682	3.287	3.056	2.901	2.790	2.475	2.288	2.066
16	4.494	3.634	3.239	3.007	2.852	2.741	2.425	2.235	2.010
17	4.451	3.592	3.197	2.965	2.810	2.699	2.381	2.190	1.960
18	4.414	3.555	3.160	2.928	2.773	2.661	2.342	2.150	1.917
19	4.381	3.522	3.127	2.895	2.740	2.628	2.308	2.114	1.878
20	4.351	3.493	3.098	2.866	2.711	2.599	2.278	2.082	1.843
25	4.242	3.385	2.991	2.759	2.603	2.490	2.165	1.964	1.711
30	4.171	3.316	2.922	2.690	2.534	2.421	2.092	1.887	1.622
40	4.085	3.232	2.839	2.606	2.449	2.336	2.003	1.793	1.509
50	4.034	3.183	2.790	2.557	2.400	2.286	1.952	1.737	1.438
100	3.936	3.087	2.696	2.463	2.305	2.191	1.850	1.627	1.283
80	3.841	2.996	2.605	2.372	2.214	2.099	1.752	1.517	1.002

6