UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION PAPER 2012

TITLE OF PAPER : MATHEMATICS FOR STATISTICIANS	
COURSE CODE $:$	ST 202
TIME ALLOWED $:$	TWO (2) HOURS
REQUIREMENTS $:$	CALCULATOR
INSTRUCTIONS $:$	THIS PAPER HAS FIVE (5). ANSWER ANY
	THREE (3) QUESTIONS.

Question 1

(a) Ascertain the LU decomposition of the following matrix (B).

$$
B=\left(\begin{array}{cccc}
1 & 3 & 5 & 2 \\
0 & -1 & 3 & 4 \\
2 & 1 & 9 & 6 \\
3 & 2 & 4 & 8
\end{array}\right)
$$

Also find the determinant of B.
(b) An investor saves money in a bank account paying interest at a fixed rate of 100%, where the interest is paid once per year, at the end of the year. She deposits an amount D at the beginning of each of the next N years. Show that she will then have saved an amount equal to

$$
\frac{D}{r}\left([1+r]^{N}-1\right)
$$

just after the last of these deposits.

Question 2

[20 marks, $8+8+4]$

(a) Solve the following system of equations using the Gauss-Jordan elimination method.

$$
\begin{array}{r}
4 x-y-z=4 \\
2 x-3 y-z=4 \\
2 x-5 y+z=8
\end{array}
$$

(b) Determine the integrals.

$$
\int \frac{x}{\sqrt{e^{x}}} d x, \quad \int \frac{x}{x^{2}+5 x+4} d x
$$

(c) Consider

$$
A=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & -2 \\
0 & -2 & 3
\end{array}\right)
$$

Find the rank of A.

Question 3

(a) Functions f and g are as follows

$$
f(x)=x^{4}+2 x^{3}+2 x^{2}+2, \quad g(x)=-x^{4}+2 x^{3}+18 x+20 .
$$

Show that the curves $y=f(x)$ and $y=g(x)$ intersect for exactly two values of x. Find these values of x. (Do not attempt to sketch the curves.)
(b) Use L'Hôpital's Rule to determine

$$
\lim _{x \rightarrow+\infty} x\left(\pi / 2-\tan ^{-1} x\right)
$$

(c) Find the eigenvalues and eigenvectors of the matrix

$$
B=\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 3
\end{array}\right)
$$

Question 4

[20 marks, $4+6+2+4+4]$
(a) Use Newton's Method to determine an approximation to the solution to $\cos x=x$ that lies in the interval $[0,2]$. Find the approximation to six decimal places.
(b) An apartment complex has 250 apartments to rent. If they rent x apartments then their monthly profit, in dollars, is given by,

$$
P(x)=-8 x^{2}+3200 x-80,000
$$

How many apartments should they rent in order to maximize their profit?
(c) It has been determined that the probability density function for the wait in line at a counter is given by,

$$
f(t)= \begin{cases}0 & \text { if } t<0 \\ 0.1 \exp \left(-\frac{t}{10}\right) & \text { if } t \geq 0\end{cases}
$$

where t is the number of minutes spent waiting in line. Answer each of the following questions about this probability density function.
(i) Verify that this is in fact a probability density function.
(ii) Determine the probability that a person will wait in line for at least 6 minutes.
(iii) Determine the mean wait in line.

Question 5

(a) Determine the center of mass for the region bounded by $y=x^{3}$ and $y=\sqrt{x}$.
(b) Find the geometric series that has second term equal to 5 and sum to infinity equal to 20 .
(c) The function f is defined for positive y and all x by

$$
f(x, y)=x^{2} \ln y-y \ln y
$$

Find the critical (or stationary) points of f and determine, for each, whether it is a local maximum, a local minimum, or a saddle point.

