UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION PAPER 2012TITLE OF PAPER : DISTRIBUTION THEORYCOURSE CODE : ST301
TIME ALLOWED : TWO (2) HOURS
REQUIREMENTS : CALCULATOR
INSTRUCTIONS ANSWER ANY THREE QUESTIONS

Question 1

(a) Consider the following suggested model for the lifetime of an electrical component. Each component has a quality factor q; and the distribution of the lifetime of the component has pdf

$$
f(x)= \begin{cases}q e^{-q x} & x>0 \\ 0 & \text { elsewhere }\end{cases}
$$

where $q>0$. The value of q varies between components. The quality factor of a randomly chosen component has pdf

$$
f(q)= \begin{cases}\beta e^{-\beta q} & q>0 \\ 0 & \text { elsewhere }\end{cases}
$$

where $\beta>0$ is a parameter. Find the pdf of the lifetime of a randomly chosen component.
(b) X has pdf

$$
f(x)= \begin{cases}\frac{k x^{3}}{(1+2 x)^{6}} & x>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the pdf of $Y=\frac{2 X}{1+2 X}$ and identify the constant k.
(c) X_{1}, X_{2} and X_{3} are independent, each uniformly distributed on the interval (0,1). Find $\mathbb{P}\left(X_{1}<\right.$ $X_{2}<X_{3}$).

Question 2

[20 marks, $3+4+3+6+4]$

(a) A regular insurance claimant is trying to hide 3 fraudulent claims among 7 genuine claims. The claimant knows that the insurance company processes claims in batches of 5 or in batches of 10 . For batches of 5 , the insurance company will investigate one claim at random to check for fraud; for batches of 10, two of the claims are randomly selected for investigation. The claimant has three possible strategies:
(i) submit all 10 claims in a single batch,
(ii) submit two batches of 5 , one containing 2 fraudulent claims the other containing 1 ,
(iii) submit two batches of 5 , one containing 3 fraudulent claims the other containing 0 .

What is the probability that all three fraudulent claims will go undetected in each case? What is the best strategy?
(b) Let Y be a random variable that has a Bernoulli distribution with parameter p, that is, $P(Y=1)=p$ and $P(Y=0)=1-p$. Without using generating functions:
(i) Show that $E\left(Y^{r}\right)=p$ for $r=1,2, \cdots$.
(ii) Find the third central moment of Y.

Question 3

[20 marks, 6+6+8]
(a) If both X and Y are two independent Geometric random variables with parameter p, given $X+Y=$ z, prove that the conditional distribution of X is uniform with parameter $z-1$.
(b) If $Z \sim \operatorname{Polya}(r, p)$, then the mass function of Z is

$$
f_{Z}(z)= \begin{cases}\frac{\Gamma(r+z)}{z!\Gamma(r)} p^{r}(1-p)^{z} & \text { for } z=0,1,2,3, \cdots \\ 0 & \text { otherwise }\end{cases}
$$

Show that the Polya distribution is a valid distribution.
(c) Use the moment generating function and cumulant generating function for a negative binomial to find the first and second central moments of a negative binomial distribution.

Question 4

Consider the function

$$
f_{X, Y}(x, y)= \begin{cases}x+y & \text { for } 0<x, y<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Show that $f_{X, Y}$ is a valid density.
(b) Derive the joint distribution function of X and Y.
(c) Find the marginal density of X.
(d) Find the correlation of X and Y.

Question 5

[20 marks, 6+8+6]
(a) Bob regularly frequents a certain cake shop and on each visit Bob buys buns and doughnuts. Let B and D denote the total number of buns and doughnuts that Bob buys on one particular visit. The (B, D) have the joint probability mass function.

	D		
B	1	2	4
0	k^{2}	$2 k$	$k(1-k)$
1	k	k^{2}	k
2	$k(1-k)$	$2 k$	0

Calculate the covariance of B and D.
(b) If both X and Y are two independent Geometric random variables with parameter p, prove that $X+Y$ is a Pascal (Negative Binomial) random variable with parameters 2 and p.
(c) Let X and Y be independent random variables with $X \sim \operatorname{Gamma}\left(\alpha_{1}, \lambda_{1}\right)$ and $Y \sim \operatorname{Gamma}\left(\alpha_{2}, \lambda_{2}\right)$. Give an expression for the moment generating function of Z where $Z=X+Y$. Under what conditions does Z have a Gamma distribution?

