UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION
ACADEMIC YEAR: 2012/2013

TITLE OF PAPER: DEMOGRAPHIC METHODS

CORSE NUMBER: DEM 202

TIME ALLOWED: 3 HOURS

INSTRUCTIONS: ANSWER ANY FOUR QUESTIONS. ALL QUESTIONS ARE WORTH 25 MARKS EACH.

REQUIREMENTS: CALCULATOR

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

Question 1

(a) Using the data for country A and Country B as given below:
I. What are the infant mortality rates for country A and B ? (4)
II. What percentage of the infant deaths in each country are neonatal deaths? (2)
III. What does this imply on the likely level of development of country A compared to country B? Explain.(3)

Table 1: Data for Countries A and B in 1990

	Country A	Country B
No. of women aged 15-49	200,000	250,000
Children under age 5	400,000	550,000
Births	50,000	50,000
Infant deaths	7500	5000
Neonatal deaths	3500	1250

(b) Distinguish between the following:
I. exogenous and endogenous causes of death (give an example for each). (6)
II. neonatal and post-neonatal mortality. (4)
(c) Given the following births and infant deaths recorded in Belgium, calculate:
I. The conventional infant mortality rate for 1968. (2)
II. The adjusted infant mortality rate for 1968 using the cohort method (2)
III. The adjusted infant mortality rate for 1968 using the additive method (2)

Table 2: Births and Infant deaths in Belgium, 1967-69

Year	Birth Cohort	Age (yrs)	Deaths	Births
1967	1967	0	2893	142471
1968	1967	0	481	-----
1968	1968	0	2603	138214
1969	1968	0	302	------

Question 2

a) What are the limitations of the national growth rate method for estimating internal migration?(4)
b) What are the assumptions for the survival ratio methods? (4)
c) What is the main difference between the forward survival ratio method and the reverse survival ratio method? (3)
d) Using the data in Table 3, calculate:
I. in -migration rates for the Hhohho and Shiselweni regions (2)
II. out-migration rates for the Manzini and Lubombo region (2)

Table 3: Enumerated population classified by region of birth and region of residence, Swaziland

Region of Residence/Enumeration

Region of birth	Hhohho	Manzini	Shiselweni	Lubombo
Hhohho	169878	4824	1887	2761
Manzini	7287	170743	7321	4906
Shiselweni	1442	2995	135396	1476
Lubombo	3130	6357	2615	139439

(d) Using the data in Table 4, calculate the number of births born to women aged 15 49 that survive to be aged 0-4 in 1986. (10)

Table 4: Indian Female Population by Age and ASFR

Age group	Population $\mathbf{1 9 8 1}$	Population $\mathbf{1 9 8 6}$	ASFR
$15-19$	33163600	38882496	0.0436
$20-24$	28482300	32498670	0.1242
$25-29$	25072700	27787902	0.1127
$30-34$	21734600	24377183	0.0795
$35-39$	18950900	21050612	0.0468
$40-44$	16452800	18271889	0.0236
$45-49$	13960400	15762934	0.0115

Additional Information: Survivorship ratio is 0.88827

Question 3

a) What is standardization? (2)
b) What are the guidelines for choosing a standard population? (3)
c) Using the data below, compare and discuss death rates for Country A and B using the appropriate method of standardization. (15)

Table 5: Age distribution and age-specific mortality for the UK and Kuwait, 1996
A
United Kingdom

Age group	Population	Deaths	Population	Deaths
$0-14$	11358354	7225	512179	726
$15-29$	11902658	7571	495541	317
$30-44$	12935390	16671	538018	491
$45-59$	10582022	53998	166343	678
$60-69$	5418489	100896	29744	587
$70+$	6604552	452536	12156	1016

d) Present a formula for computing the 'age composition effect' when decomposing the difference between two populations' crude death rates and define the components of the formula.(5)

Question 4

a) Define the following life table functions:
I. ${ }_{\mathrm{n}} \mathrm{q}_{\mathrm{x}}(2)$
II. $e_{0}(2)$
III. ${ }_{\mathrm{n}} \mathrm{M}_{\mathrm{x}}(2)$
IV. ${ }_{n} L_{x}(2)$
V. $\mathrm{T}_{\mathrm{x}}(2)$
b) You are given the following gross nuptiality table for a hypothetical population. Fill in the missing values numbered (i) to (vi) in Table 6, showing clearly the formulae and notations used for each answer. (12)

Table 6: Gross Nuptiality Table for a Hypothetical Population

Age	$\mathbf{n} \mathbf{M}_{\mathbf{x}}$	$\mathbf{n}_{\mathbf{x}}$	$\mathbf{S}_{\mathbf{x}}$	${ }_{\mathbf{n}} \mathbf{H}_{\mathbf{x}}$	$\mathbf{n}_{\mathbf{x}}$	$\mathbf{n L x}$	$\mathbf{T}_{\mathbf{x}}$	$\mathbf{P}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$
$15-19$	0.0630	0.27215	10000	27215	62071	431962	175029 2	0.6207	17.5
$20-24$	0.0794	0.33120	72785	24106	34856	(iv)	(v)	0.4789	18.1
$25-29$	0.0290	0.13534	48679	6588	10750	226925	101467 0	0.2208	(vi)
$30-34$	0.0100	(i)	42091	2048	(iii)	205335	787745	0.0989	18.7
$35-39$	0.0050	0.02492	40043	998	2114	197720	582410	0.0528	14.5
$40-44$	0.0031	0.01522	(ii)	594	1116	193740	384690	0.0286	9.9
$45-49$	0.0027	0.01357	38451	522	522	190950	190950	0.0136	5.0
$50-54$	0.0010	--	37929	---	--	--	---	---	---

c) At the start of the $21^{\text {st }}$ century, China had an estimated R_{0} of 0.81297 and an R_{1} of 23.528. Calculate the population's intrinsic rate of natural increase. (3)

Question 5

a) Why is the study of nuptiality of particular importance in demography? (8)
b) A net nuptiality table is a type of double-decrement life table. Which are the two forces of decrement, and which is the state being decremented? (4)
c) Using the data in Table 7 below, calculate the mean age at marriage for males and females and give an interpretation of the results.(11)

Table 7: Number of people marrying for the first time by age and sex, England, 1991

Age	Males	Females
$15-19$	4630	17704
$20-24$	74378	103689
$25-29$	91675	72523
$30-34$	34560	21000
$35-39$	10252	5785
$40-44$	3998	2075
$45-49$	1520	911

d) What is meant by population projection? (2)

Question 6

(a) Provide a concise definition of the following concepts:
i. Demographic analysis (2)
ii. A Lexis diagram (2)
iii. Reproductivity (2)
b) If the crude birth rate in a country remains constant over a number of years but the general fertility rate increases steadily, what does this tell you about the country's population? (3)
c) Using the data in Table 8, below calculate the following:
i) ASFRs for age groups 15-19 to 25-29 (6)
ii) The total fertility rate (4)
iii) The Gross Reproduction Rate (3)
iv) The Net Reproduction Rate (3)

Table 8: Statistics for fertility calculation, Australia, 1996

Age	Total births	Female births	Total women	Survival Probability
$15-19$	12509	5988	621542	0.99175
$20-24$	44837	21807	694273	0.98985
$25-29$	82782	40278	709746	0.98792
$30-34$	76435	37227	720453	0.98566
$35-39$	31864	15359	727555	0.98261
$40-44$	5113	2470	672182	0.97826
$45-49$	128	61	640985	0.97152

