UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION

ACADEMIC YEAR: 2012/2013

at .-1

TITLE OF PAPER: DEMOGRAPHIC METHODS

CORSE NUMBER: DEM 202

TIME ALLOWED: 3 HOURS

INSTRUCTIONS: ANSWER <u>ANY FOUR</u> QUESTIONS. ALL QUESTIONS ARE WORTH 25 MARKS EACH.

REQUIREMENTS: CALCULATOR

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

Question 1

(a) Using the data for country A and Country B as given below:

- I. What are the infant mortality rates for country A and B? (4)
- II. What percentage of the infant deaths in each country are neonatal deaths?(2)
- III. What does this imply on the likely level of development of country A compared to country B? Explain.(3)

	Country A	Country B	
No. of women aged 15-49	200,000	250,000	
Children under age 5	400,000	550,000	
Births	50,000	50,000	
Infant deaths	7500	5000	
Neonatal deaths	3500	1250	

(b) Distinguish between the following:

- I. exogenous and endogenous causes of death (give an example for each). (6)
- II. neonatal and post-neonatal mortality. (4)

(c) Given the following births and infant deaths recorded in Belgium, calculate:

- I. The conventional infant mortality rate for 1968. (2)
- II. The adjusted infant mortality rate for 1968 using the cohort method (2)
- III. The adjusted infant mortality rate for 1968 using the additive method (2)

Year	Birth Cohort	Age (yrs)	Deaths	Births	
1967	1967	0	2 893	142 471	
1968	1967	0	481		
1968	1968	0	2 603	138 214	
1969	1968	0	302		

Table 2: Births and Infant deaths in Belgium, 1967-69

Question 2

- a) What are the limitations of the national growth rate method for estimating internal migration?(4)
- b) What are the assumptions for the survival ratio methods? (4)
- c) What is the main difference between the forward survival ratio method and the reverse survival ratio method? (3)
- d) Using the data in Table 3, calculate:I. in –migration rates for the Hhohho and Shiselweni regions (2)

II. out-migration rates for the Manzini and Lubombo region (2)

Region of Residence/Enumeration				
Region of birth	Hhohho	Manzini	Shiselweni	Lubombo
Hhohho	169878	4824	1887	2761
Manzini	7287	170743	7321	4906
Shiselweni	1442	2995	135396	1476
Lubombo	3130	6357	2615	139439

 Table 3: Enumerated population classified by region of birth and region of residence, Swaziland

(d) Using the data in Table 4, calculate the number of births born to women aged 15-49 that survive to be aged 0-4 in 1986. (10)

Age group	Population 1981	Population 1986	ASFR
15-19	33 163 600	38 882 496	0.0436
20-24	28 482 300	32 498 670	0.1242
25-29	25 072 700	27 787 902	0.1127
30-34	21 734 600	24 377 183	0.0795
35-39	18 950 900	21 050 612	0.0468
40-44	16 452 800	18 271 889	0.0236
45-49	13 960 400	15 762 934	0.0115

 Table 4: Indian Female Population by Age and ASFR

Additional Information: Survivorship ratio is 0.88827

Question 3

- a) What is standardization? (2)
- b) What are the guidelines for choosing a standard population? (3)
- c) Using the data below, compare and discuss death rates for Country A and B using the appropriate method of standardization. (15)

 Table 5: Age distribution and age-specific mortality for the UK and Kuwait, 1996

	A		B	
	United King	dom	Kuwait	
Age group	Population	Deaths	Population	Deaths
0-14	11 358 354	7225	512 179	726
15-29	11 902 658	7571	495 541	317
30-44	12 935 390	16 671	538 018	491
45-59	10 582 022	53 998	166 343	678
60-69	5 418 489	100 896	29 744	587
70+	6 604 552	452 536	12 156	1016

d) Present a formula for computing the 'age composition effect' when decomposing the difference between two populations' crude death rates and define the components of the formula.(5)

Question 4

- a) Define the following life table functions:
 - I. $_{n}q_{x}(2)$
 - II. e_0 (2)
 - III. $_{n}M_{x}(2)$
 - IV. $_{n}L_{x}(2)$
 - V. T_x (2)
- b) You are given the following gross nuptiality table for a hypothetical population. Fill in the missing values numbered (i) to (vi) in Table 6, showing clearly the formulae and notations used for each answer. (12)

Table 6: Gross Nuptiality Table for a Hypothetical Population

Age	nM _x	_n N _x	S _x	nH _x	_n E _x	nLx	T _x	P _x	e _x
15-19	0.0630	0.27215	100000	27215	62071	431962	175029 2	0.6207	17.5
20-24	0.0794	0.33120	72785	24106	34856	(iv)	(v)	0.4789	18.1
25-29	0.0290	0.13534	48679	6588	10750	226925	101467 0	0.2208	(vi)
30-34	0.0100	(i)	42091	2048	(iii)	205335	787745	0.0989	18.7
35-39	0.0050	0.02492	40043	998	2114	197720	582410	0.0528	14.5
40-44	0.0031	0.01522	(ii)	594	1116	193740	384690	0.0286	9.9
45-49	0.0027	0.01357	38451	522	522	190950	190950	0.0136	5.0
50-54	0.0010		37929						

c) At the start of the 21^{st} century, China had an estimated R_0 of 0.81297 and an R_1 of 23.528. Calculate the population's intrinsic rate of natural increase. (3)

4

Question 5

- a) Why is the study of nuptiality of particular importance in demography? (8)
- b) A net nuptiality table is a type of double-decrement life table. Which are the two forces of decrement, and which is the state being decremented? (4)
- c) Using the data in Table 7 below, calculate the mean age at marriage for males and females and give an interpretation of the results.(11)

Table 7: Number of people marrying for the first time by age and sex, England, 1991

Age	Males	Females	
15-19	4 630	17 704	
20-24	74 378	103 689	
25-29	91 675	72 523	
30-34	34 560	21 000	
35-39	10 252	5 785	
40-44	3 998	2 075	
45-49	1 520	911	

d) What is meant by population projection? (2)

Question 6

- (a) Provide a concise definition of the following concepts:
 - i. Demographic analysis (2)
 - ii. A Lexis diagram (2)
 - iii. Reproductivity (2)
- b) If the crude birth rate in a country remains constant over a number of years but the general fertility rate increases steadily, what does this tell you about the country's population? (3)
- c) Using the data in Table 8, below calculate the following:
 - i) ASFRs for age groups 15-19 to 25-29 (6)
 - ii) The total fertility rate (4)
 - iii) The Gross Reproduction Rate (3)
 - iv) The Net Reproduction Rate (3)

	Total births	Female	Total	Survival
Age		births	women	Probability
15-19	12509	5988	621542	0.99175
20-24	44837	21807	694273	0.98985
25-29	82782	40278	709746	0.98792
30-34	76435	37227	720453	0.98566
35-39	31864	15359	727555	0.98261
40-44	5113	2470	672182	0.97826
45-49	128	61	640985	0.97152

Table 8: Statistics for fertility calculation, Australia, 1996