UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER 2013

TITLE OF PAPER : INFERENTIAL STATISTICS COURSE CODE : ST 220 TIME ALLOWED : TWO (2) HOURS
REQUIREMENTS : CALCULATOR AND STATISTICAL TABLES
INSTRUCTIONS : THIS PAPER HAS FIVE (5). ANSWER ANY THREE (3) QUESTIONS.

Question 1

(a) Tins of baked beans are packed into boxes of 24 . Results from a random sample of 25 boxes delivered to supermarkets show that a total of 8 tines were damaged. Assess the claim that less than 2% of tins are damaged during delivery.
(b) You need to build a bench that will seat 18 male college football players, and you mush first determine the length of the bench. Man have hip breadths that are normally distributed with a mean of 36 cm and a standard deviation of 2.5 cm . What is the minimum length of the bench if you want a 0.975 probability that it will fit the combined hip breadths of 18 randomly selected men?
(c) Replacement times for TV sets are normally distributed with a mean of 8.2 years and a standard deviation of 1.1 years.
(i) Find the probability that a randomly selected TV will have a replacement time less than 5.0 years.
(ii) If you want to provide a warranty so that only 1% of the TV sets will be replaced before the warranty expires, what is the time length of the warranty?

Question 2

[20 marks, $4+8+4+4]$
(a) Following are the numbers of newspapers sold by eight randomly selected news vendors on the east side of the city and by eight randomly selected news vendors on the west side of the city:

East side: $47,56,32,59,51,34,57,42$
West side: $38,19,50,40,58,29,36,40$
(i) Construct a 95% confidence interval of the mean difference between east side sales and west side sales.
(ii) Use the 1% level of significance to test whether news vendors on the east side of the city sell more newspapers than news vendors on the west side of the city.
(b) The television show Letishisako has a 15 share, meaning that while it is being broadcast 15% of the TV sets are tuned to Letishisako. A special focus group consists of 20 randomly selected households (each with one TV set in use during the time of a Letishisako broadcast.
(i) In such a group of 20, what is the standard deviation for the number of sets tuned to Letishisako?
(ii) For such a group of 20, find the probability that exactly 5 TV sets are tuned to Letishisako?

Question 3

(a) Use the data in the following table to test the claim that occupation is independent of whether the cause of death was homicide. Does any particular occupation appear to be most prone to homicides? If so which one?

	Police	Cashiers	Taxi Drivers	Guards
Homicide	82	107	70	59
Cause of death other	92	9	29	42
than homicide				

(b) A convenience food, known as 'Quicknosh' was introduced into the British market in January 2002. After a poor year for sales the manufacturers initiated an intensive advertising campaign during January 2003. The following table records the sales, in thousands of pounds, for a one-month period before and one-month period after the advertising campaign, for each of eleven regions.

Region	A	B	C	D	E	F	G	H	I	J	K
Sales before cam-	2.4	2.6	3.9	2.0	3.2	2.2	3.3	2.1	3.1	2.2	2.8
paign Sales after campaign	3.0	2.5	4.0	4.1	4.8	2.0	3.4	4.0	3.3	4.2	3.9

Assuming sales are normally distributed, determine, at the 5% significance level, whether an increase in mean sales has occurred using an appropriate test.

Question 4

A sweet shop sells chocolates which appear, at first sight, to be identical.
(a) Of a random sample of 80 chocolates, 61 are hard centres and the rest are soft centres. Test the hypothesis that 70% of the chocolates have hard centres.
(b) The chocolates are all in the shape of circular disks and the diameters in, millimetres, of the 19 soft centred chocolates were as follows

279	263	284	277	281	269	266
271	262	275	266	272	281	
274	279	277	267	269	275	

Assuming that the diameters of the soft centred chocolates are normally distributed, test, at the 10% significance level, the hypothesis that their mean diameter is 27.5 cm .
What changes would you make in your test if it was known that the standard deviation of the diameters of soft centred chocolates was 5 mm .

Question 5

[20 marks, 10+10]
(a) A farmer kept a record of the number of heifer calves born to each of his cows during the first five years of breeding of each cow. The results are summarized in the following table.

Number of heifers	0	1	2	3	4	5
Number of cows	4	19	41	52	26	6

Test at the 5% level of significance, whether or not the binomial distribution with parameters $n=5$ and $p=0.5$ is an adequate model for these data.
(b) The following data give the lifetimes, in hours, of three types of battery.

	I	50.1	49.9	49.8	49.7	50.0
Type	II	51.0	50.8	50.9	50.9	50.6
	III	49.5	50.1	50.2	49.8	49.3

Analyse these data for a difference between mean lifetimes. (Use a 5% significance level.)

Cumulative Standardized Normal Distribution
$A(z)$ is the integral of the standardized normal distribution frem -0 to z (in other words, the area under the curve to the leff of f). It gives the
probability of a normal random veriable not probability of a normal random variable not being more than z standard deviaions above
mean. Values of z of particular importance:

8	
\%	
8	
8	
$\stackrel{3}{\circ}$	
$\stackrel{\text { ¢ }}{\text { ¢ }}$	
"	
Ö.	
항	人)
8	

Percentage Points of the t-Distribution

This table gives the percentage pointa $t_{0}(P)$ for various velues of P and degrees of tree- dom ν, as indicated by the figure to the

 dom ν,right.
The

The lower percentage points are given by symmetry as $-t_{\nu}(P)$, sad the probability that $|t| \geq t_{\nu}(P)$ is $2 P / 100$.
The limiting distribution of t as $\nu \rightarrow \infty$ the normal distribution with zero mean and unit variance.

ν	Percentage points P						
	10	5	2.5	1	0.5	0.1	0.05
$\underline{ }$	3.078	6.314	12.706	31.821	63.657	318.3009	636.619
2	1.886	2.980	4.303	6.965	9.925	22.327	31.599
3	1.638	2.353	3.182	4.541	5.841	10.215	12.824
4	1.533	2.132	2.776	3.747	4.804	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.298	5.959
7	1.415	1.895	2.365	2.998	3.489	4.785	5.408
8	1.397	1.860	2.306	2.886	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.189	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.850	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
18	1.330	1.734	2.101	2.552	2.878	3.610	3.822
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
50	1.299	1.676	2.009	2.403	2.678	3.281	3.493
10	1.294	1.667	1.984	2.381	2.648	3.211	3.435
100	1.290	1.600	1.984	2.364	2.626	3.174	3.390
∞	1.282	1.645	1.960	2.328	2.576	3.090	3.291

This table gives the percentage points $\chi_{0}^{2}(P)$
for various values of P and degrees of freeTomaious values of P and degrees of freedom
right.
If
If X is a variable distributed as x^{2} with degrees of freedom, $P / 100$ is the probabil For $u>100, \sqrt{2 X}$ is approximately nor mally distributed with mean $\sqrt{2} v-1$ and unt variance.

ν	Percentage points P						
	10	5	2.5	1	0.5	0.1	0.05
1	2.706	3.841	5.024	6.635	7.879	10.828	12.116
2	6. 605	5.991	7.378	9.210	10.597	13.816	15.202
3	6.251	7.815	9.348	11.345	12.838	16.260	17.730
4	7.779	9.488	11.143	13.277	14.860	18.467	19.997
5	9.236	11.070	12.833	15.086	16.750	20.515	22.105
θ	10.645	12.692	14.449	16.812	18.548	22.458	24.103
7	12.017	14.067	16.013	18.475	20.278	24.322	20.018
8	13.362	15.507	17.535	20.090	21.955	26.124	27.868
9	14.684	16.919	19.023	21.668	23.589	27.877	29.606
10	15.987	18.307	20.483	23.209	25.188	29.588	31.420
11	17.275	19.675	21.920	24.725	26.757	31.264	33.137
12	18.549	21.026	23.337	20.217	28.300	32.069	34.821
13	19.812	22.362	24.736	27.688	29.819	34.528	36.478
14	21.094	23.685	26.119	29.141	31.319	36.123	38.109
15	22.307	24.996	27.488	30.578	32.801	37.697	39.719
16	23.542	26.296	28.845	32.000	34.267	39.252	41.308
17	24,769	27.587	30.191	33.409	35.718	40.780	42.879
18	25.989	28.869	31.526	34.805	37.156	42.312	44.434
19	27.204	30.144	32.852	36.191	38.582	43.820	45.973
20	28.412	31.410	34.170	37.566	39.997	45.315	47.488
25	34.382	37.652	40.646	44.314	46.928	52.620	54.947
30	40.256	43.773	46.979	50.892	53.672	59.703	62.162
40	51.805	55.758	59.342	63.691	66.766	73.402	76.095
50	63.167	67.505	71.420	76.154	79.400	86.661	89.501
80	96.578	101.879	106.629	112.329	116.321	124.839	128.281

N_{2}	ν_{3}								
	1	2	3	4	$*$	θ	12	24	∞
2	18.513	19.000	19.164	19.247	19.206	19.330	19.413	10.454	19.466
3	10.128	9. 552	9.277	9.117	9.013	8.841	8.745	8.639	8.526
4	7.709	6.94	6.591	6.388	6.256	6.163	5.912	5.774	5.628
6	6.608	5.786	5.409	5.192	5.050	4.950	4.678	4.527	4.365
6	5.887	5.143	4.757	4.534	4.387	4.284	4.000	3.841	3.669
7	5.591	4.737	4.347	4.120	3.972	3.866	3.575	3.410	3.230
8	5.318	4.459	4.066	3.838	3.687	3.581	3.284	3.115	2.928
9	5.117	4.256	3.863	3.833	3.482	3.374	3.073	2.900	2.707
10	4.965	4.103	3.708	3.478	3.326	3.217	2.913	2.737	2.538
11	4.84	3.682	3.587	3.357	3.204	3.095	2.788	2.809	2.404
12	4.747	3.885	3.400	3.259	3.106	2.996	2.887	2.505	2.206
13	4.667	3.806	3.411	3.179	3.025	2.915	2.604	2.420	2.200
14	4.600	3.739	3.344	8.112	2.958	2.848	2.534	2.349	2.131
15	4.543	3.682	3.287	3.056	2.501	2.790	2.475	2.288	2066
16	4.494	3.634	3.239	3.007	2.852	2.741	2.425	2.235	2.010
17	4.451	3.592	3.197	2.965	2.810	2.699	2.381	2.190	1.960
18	4.414	3.555	3.160	2.928	2.773	2.661	2.342	2.150	1.917
19	4.381	3.522	3.127	2.895	2.740	2.628	2.308	2.114	1.878
20	4.351	3.493	3.098	2.866	2.711	2.599	2.278	2.082	1.843
25	4.242	3.385	2.991	2.759	2.803	2.490	2.185	1.964	1.711
30	4.171	3.316	2.922	2.690	2.534	2.421	2.092	1.887	1.622
40	4.885	3.232	2.839	2.608	2.449	2.336	2.003	1.793	1.509
50	4.034	3.183	2.790	2.557	2.400	2.280	1.952	1.737	1.438
100	3.936	3.087	2.696	2.463	2.305	2.191	1.850	1.627	1.283
∞	3.841	2.996	2.605	2.372	2.214	2.099	1.752	1.517	1.002

