DEPARTMENT OF STATISTICS AND DEMOGRAPHY

SUPPLEMENTARY EXAMINATION, 2013/14
COURSE TITLE: MATHEMATICS FOR STATISTICS
COURSE CODE: ST 202
TIME ALLOWED: THREE (3) HOURS
INSTRUCTION: ANSWER ANY THREE QUESTIONS
SPECIAL REQUIREMENTS: SCIENTIFIC CALCULATORS AND STATISTICAL TABLES

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

Question 1

If x is a Gamma-distributed random variable (with $\alpha=2$ and $\beta=1$), its probability density function is given by

$$
f(x)=x e^{-x}, \text { for } x \geq 0
$$

(a) Determine all critical values and critical points of $f^{\prime}(x)$ and indicate the direction of the slope around each extreme point.
(b) Determine all critical values and critical points of $f^{\prime \prime}(x)$ and indicate the concavity around the point(s).
(c) Now, sketch the graph of the density function.
(5 marks)

Question 2

(a) Given that $f(x, y)=x y e^{x y}$, find
(i) f_{y}
(3 marks)
(ii) $f_{y x}$
(3 marks)
(b) Find the derivative of the functions:
(i) $y=e^{-3 x}+5$,
(ii) $y=\ln \frac{5 x}{x+2}$,
(iii) $y=x^{\ln x}$
(6 marks)
(c) Find the second derivative of the function
$f(x)=x \ln \sqrt{x}+2 x$
(3 marks)
(d) Find the first partial derivatives of $f(x, y)=x e^{x y}$, and evaluate it at the point $(1, \ln 2)$ (2 marks)
(e) Find the slope of the curve $x^{2}+x y+y^{2}=2$ at the point $(1,2)$
(3 marks)

Question 3

(a) Let x be a discrete random variable whose probability mass function is given by $f(x)=\frac{1}{11}\left(x^{2}-x=1\right)$, for $\mathrm{x}=1,2,3$.
(i) Find the mean and variance
(3 + 4 marks)
(ii) Find $P(X<\mu)$
(3 marks)
(b) Let X and Y have the joint density given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{2}(3 x+y), \text { for } & 0<x<1 \& 0<y<1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

(i) Find μ_{y} and σ_{y}
($5+5$ marks)

Question 4

(a) Write the following system of equations in matrix form and use determinants to solve for x, y and z .

$$
\begin{aligned}
& 2 x+3 y+z=10 \\
& 4 x-y-2 z=8 \\
& 5 x+2 y-3 z=6
\end{aligned}
$$

(b) Solve the following system of equations using the Gauss-Jordan elimination method:

$$
\begin{aligned}
& x+y+2 z=9 \\
& 2 x+4 y-3 z=1 \\
& 3 x+6 y-5 z=0
\end{aligned}
$$

(c) Suppose $x=\left[\begin{array}{c}2 \\ 0 \\ -4\end{array}\right]$ and $y=\left[\begin{array}{c}0 \\ -1 \\ -3\end{array}\right]$

Use vector algebra to find the least squares regression line through the set of points determined by vectors x and y.

Question 5

(a) Find eigenvalues and eigenvectors of matrix $A=\left[\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$
(10 marks)
(b) Find the adjoint of the following matrix A and use the adjoint to find the inverse of this matrix.

$$
A=\left[\begin{array}{ccc}
3 & 2 & -1 \\
1 & 6 & 3 \\
2 & -4 & 0
\end{array}\right]
$$

END OF EXAM!!

