UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION PAPER 2014

TITLE OF PAPER	:	SAMPLE SURVEY THEORY
COURSE CODE	:	ST306
TIME ALLOWED	:	TWO (2) HOURS
REQUIREMENTS	:	CALCULATOR AND STATISTICAL TABLES
INSTRUCTIONS	:	ANSWER ANY THREE QUESTIONS

Question 1

[20 marks, 10+5+5]

(a) Foresters want to estimate the average age of trees in a stand. Determining age is cumbersome because one needs to count the tree rings on a core taken from the tree. In general, though, the older the tree, the larger the diameter, and diameter is easy to measure. The foresters measure the diameter of all 1132 trees and find that the population mean equals 10.3. They then randomly select 20 trees for age measurement.

Tree No.	Diameter, x	Age, y	Tree No.	Diameter, x	Age, y
1	12.0	125	11	5.7	61
2	11.4	119	12	8.0	80
3	7.9	83	13	10.3	114
4	9.0	85	14	12.0	147
5	10.5	99	15	9.2	122
6	7.9	117	16	8.5	106
7	7.3	69	17	7.0	82
8	10.2	133	18	10.7	88
9	11.7	154	19	9.3	97
10	11.3	168	20	8.2	99

Estimate the population mean age of trees in the stand and give an approximate standard error for your estimate.

- (b) An accounting firm is interested in estimating the error rate in a compliance audit it is conducting. The population contains 828 claims, and the firm audits an SRS of 85 of those claims. In each of the 85 sampled claims, 215 fields are checked for errors. One claim has errors in 4 of the 215 fields, 1 claim has three errors, 4 claims have two errors, 22 claims have one error, and the remaining 57 claims have no errors. (Data courtesy of Fritz Scheuren.)
 - (i) Treating the claims as psu's and the observations for each field as ssu's, estimate the error rate for all 828 claims. Give a standard error for your estimate.
 - (ii) Estimate (with SE) the total number of errors in the 828 claims.

Question 2

[20 marks, 4+4+6+6]

Suppose a city has 90,000 dwelling units, of which 35,000 are houses, 45,000 are apartments, and 10,000 are condominiums. You believe that the mean electricity usage is about twice as much for houses as for apartments or condominiums and that the standard deviation is proportional to the mean.

- (a) How would you allocate a sample of 900 observations if you want to estimate the mean electricity consumption for all households in the city?
- (b) Now suppose that you want to estimate the overall proportion of households in which energy conservation is practiced. You have strong reason to believe that about 45% of house dwellers use some sort of energy conservation and that the corresponding percentages are 25% for apartment dwellers and 3% for condominium residents. What gain would proportional allocation offer over simple random sampling?

(c) Someone else has taken a small survey, using an SRS, of energy usage in houses. On the basis of the survey, each house is categorized as having electric heating or some other kind of heating. The January electricity consumption in kilowatt-hours for each house is recorded (y_i) and the results are given below:

Type of	Number of	Sample	Sample
Heating	Houses	Mean	Variance
Electric	24	972	202,396
Nonelectric	36	463	96,721
Total	60		

From other records, it is known that 16,450 of the 35,000 houses have electric heating, and 18,550 have nonelectric heating.

- (i) Using the sample, give an estimate and its standard error of the proportion of houses with electric heating. Does your 95% CI include the true proportion?
- (ii) Give an estimate and its standard error of the average number of kilowatt-hours used by houses in the city. What type of estimator did you use, and why did you choose that estimator?

Question 3

[20 marks, 4+4+6+6]

- (a) Consider a population of size N = 5 divided into two strata where the response (y) values for the first stratum are 2, 5, and 8 and for the second stratum are 10 and 13. A stratified random sample consisting of one observation from each stratum will be taken. Let y_1 denote the sample observation from the first stratum and y_2 the sample observation from the second stratum.
 - (i) Let $\bar{y} = \frac{1}{2}(y_1 + y_2)$. Derive the sampling distribution of \bar{y} and show that it is a biased estimator of the population mean μ .
 - (ii) Let $\bar{y}_s = \frac{3}{5}y_1 + \frac{2}{5}y_2$. Derive the sampling distribution of \bar{y}_s and show that it is an unbiased estimator of μ .
- (b) Consider a population of farms on a 25×25 grid of varying sizes and shapes. If we randomly select a single square on this grid, then letting x_i = the area of farm i and A = 625 total units, the probability that farm i is selected is: $p_i = \frac{x_i}{A} = \frac{x_i}{625}$.

	$y_i = Workers$	$p_i = \frac{x_i}{A} = \frac{\text{Size of Farm}}{\text{Total Area}}$	
	2	5/625	
	8	28/625	
	4	12/625	
· · · · · · · · · · · · · · · · · · ·	8	14/625	
	3	13/625	

The table above shows a replacement sample of 5 farms selected with probability-proportional-to-size (PPS). Compute:

(i) The estimated number of workers (and associated standard errors).

(ii) The estimated number of farms (and associated standard errors).

using the Hansen-Hurwitz estimator.

Question 4

A simple random sample of 1 in 20 households in a small town provided the following data about the availability of cars and the number of adults in households.

Number of cars						
(y_i) in	Adul	ts in h	ouse	hold	(x_i)	
the household	1	2	3	4	5	Total
0	58	127	9	6	0	200
1	68	140	27	4	1	240
2	4	30	5	8	3	50
3	0	3	4	2	1	10
Total	130	300	45	20	5	500

Obtain point estimates, and approximate 95% confidence intervals for the following (NB: Summing over all 500 households, $\sum x_i y_i = 795$):

- (a) the total number of cars in the town's households,
- (b) the ratio of cars per adult in the town's households,
- (c) the proportion of households with 1 or more cars per adult.

Question 5

[20 marks, 2+6+6+6]

A simple random sample of 10 hospitals was selected from a population of 33 hospitals that had received state funding to upgrade their emergency medical services. Within each of the selected hospitals, the records of all patients hospitalised in the past 12 months for traumatic injuries (i.e. accidents, poisonings, violence, burns, etc.) were examined. The numbers of patients hospitalised for trauma conditions and the numbers who died for the selected hospitals are given below.

Hospital	Number of patients hospitalised for trauma conditions	Number with trauma conditions who died	
1	560	4	
2	190	4	
3	260	2	
4		4	a waaraa ahaa ahaa ahaa waxaa iiraa
5	190	4	
6	130	0	
7	170	9	
8	170	2	
9	60	0	-
10	110	1	

4

[20 marks, 6+8+6]

- (a) Explain why this design may be considered as a cluster sample. What are the first-stage and second-stage units?
- (b) Obtain a point estimate and an approximate 95% confidence interval for the total number of persons hospitalised for trauma conditions for the 33 hospitals. State the properties of your estimator.
- (c) Obtain a point estimate of the proportion of persons who died among those hospitalised for trauma conditions for the 33 hospitals, using the cluster totals. Hence calculate an approximate 95% confidence interval for this proportion, and comment on the validity of the assumptions necessary for this calculation.
- (d) Give reasons why, for this survey, cluster sampling might be preferred to stratified random sampling. What might be the drawbacks of cluster sampling? Discuss, with reasons, any improvements you might make if another survey was being planned on the same topic.

Useful formulas

$$\hat{\tau}_{cl} = \frac{M}{nL} \sum_{i=1}^{n} \sum_{j=1}^{L} y_{ij} = \frac{N}{n} \sum_{i=1}^{n} \sum_{j=1}^{L} y_{ij} = \frac{N}{n} \sum_{i=1}^{n} y_i = N\bar{y}$$
$$\hat{\mu}_{cl} = \frac{1}{nL} \sum_{i=1}^{n} \sum_{j=1}^{L} y_{ij} = \frac{1}{nL} \sum_{i=1}^{n} y_i = \frac{\bar{y}}{L} = \frac{\hat{\tau}_{cl}}{M}$$

where $ar{y} = rac{1}{n} \sum_{i=1}^n y_i = rac{\hat{ au}_{cl}}{N}$

$$\hat{\mathsf{V}}(\hat{\tau}_{cl}) = N(N-n)\frac{s_u^2}{n} \qquad \qquad \hat{\mathsf{V}}(\hat{\mu}_{cl}) = \frac{N(N-n)}{M^2}\frac{s_u^2}{n}$$

where $s_{u}^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}{n-1}$.

$$\hat{\mu}_1 = \bar{y} = \frac{\hat{\tau}_{cl}}{N} \qquad \qquad \hat{\mathsf{V}}(\hat{\mu}_1 = \frac{N-n}{N}\frac{s_u^2}{n}$$

The formulas for systematic sampling are the same as those used for one-stage cluster sampling. Change the subscript cl to sys to denote the fact that data were collected under systematic sampling.

$$\hat{\mu}_{c(a)} = \frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} M_{i}} = \frac{\sum_{i=1}^{n} y_{i}}{m} \qquad \hat{\mathbb{V}}(\hat{\mu}_{c(a)}) = \frac{(N-n)N}{n(n-1)M^{2}} \sum_{i=1}^{n} M_{i}^{2}(\bar{y}-\hat{\mu}_{c(a)})^{2}$$

$$\hat{\mu}_{c(b)} = \frac{N}{M} \frac{\sum_{i=1}^{n} y_{i}}{n} = \frac{N}{nM} \sum_{i=1}^{n} y_{i} \qquad \hat{\mathbb{V}}(\hat{\mu}_{c(b)}) = \frac{(N-n)N}{n(n-1)M^{2}} \sum_{i=1}^{n} (y_{i}-\bar{y})^{2} = \frac{(N-n)N}{nM^{2}} s_{u}^{2}$$

$$\hat{p}_{c} = \frac{\sum_{i=1}^{n} p_{i}}{n} \quad \hat{\mathbb{V}}(\hat{p}_{c}) = \left(\frac{N-Nn}{nN}\right) \sum_{i=1}^{n} \frac{(p_{i}-\hat{p}_{c})^{2}}{n-1} = \left(\frac{1-f}{n}\right) \sum_{i=1}^{n} \frac{(p_{i}-\hat{p}_{c})^{2}}{n-1}$$

$$\hat{p}_{c} = \frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} M_{i}} \qquad \hat{\mathbb{V}}(\hat{p}_{c}) = \left(\frac{1-f}{n\bar{m}^{2}}\right) \frac{\sum_{i=1}^{n} (y_{i}-\hat{p}_{c}M_{i})^{2}}{n-1}$$

To estimate τ , multiply $\hat{\mu}_{c(\cdot)}$ by M. To get the estimated variances, multiply $\hat{V}(\hat{\mu}_{c(\cdot)})$ by M^2 . If M is not known, substitute M with Nm/n. $\bar{m} = \sum_{i=1}^{n} M_i/n$.

$$n \text{ for } \mu \text{ SRS} \qquad n = \frac{N\sigma^2}{(N-1)(d^2/z^2) + \sigma^2}$$

$$n \text{ for } \tau \text{ SRS} \qquad n = \frac{N\sigma^2}{(N-1)(d^2/z^2N^2) + \sigma^2}$$

$$n \text{ for } p \text{ SRS} \qquad n = \frac{Np(1-p)}{(N-1)(d^2/z^2) + p(1-p)}$$

$$n \text{ for } \mu \text{ SYS} \qquad n = \frac{N\sigma^2}{(N-1)(d^2/z^2) + \sigma^2}$$

$$n \text{ for } \tau \text{ SYS} \qquad n = \frac{N\sigma^2}{(N-1)(d^2/z^2N^2) + \sigma^2}$$

$$n \text{ for } \mu \text{ STR} \qquad n = \frac{\sum_{h=1}^L N_h^2(\sigma_h^2/w_h)}{N^2(d^2/z^2) + \sum_{h=1}^L N_h\sigma_h^2}$$

$$n \text{ for } \tau \text{ STR} \qquad n = \frac{\sum_{h=1}^L N_h^2(\sigma_h^2/w_h)}{N^2(d^2/z^2N^2) + \sum_{h=1}^L N_h\sigma_h^2}$$

where $w_h = \frac{n_h}{n}$. Allocations for STR μ :

$$n_{h} = (c - c_{0}) \left(\frac{N_{h} \sigma_{h} / \sqrt{c_{h}}}{\sum_{k=1}^{L} N_{k} \sigma_{k} \sqrt{c_{k}}} \right) \qquad (c - c_{0}) = \frac{\left(\sum_{k=1}^{L} N_{k} \sigma_{k} / \sqrt{c_{k}} \right) \left(\sum_{k=1}^{L} N_{k} \sigma_{k} \sqrt{c_{k}} \right)}{N^{2} (d^{2} / z^{2}) + \sum_{k=1}^{L} N_{k} \sigma_{k}^{2}}$$
$$n_{h} = n \left(\frac{N_{h}}{N} \right) \qquad n = \frac{\sum_{k=1}^{L} N_{k} \sigma_{k}}{N^{2} (d^{2} / z^{2}) + \frac{1}{N} \sum_{k=1}^{L} N_{k} \sigma_{k}^{2}}$$
$$n_{h} = n \left(\frac{N_{h} \sigma_{h}}{\sum_{k=1}^{L} N_{k} \sigma_{k}} \right) \qquad n = \frac{\left(\sum_{k=1}^{L} N_{k} \sigma_{k} \right)^{2}}{N^{2} (d^{2} / z^{2}) + \sum_{k=1}^{L} N_{k} \sigma_{k}^{2}}$$

Allocations for STR τ :

change $N^2(d^2/z^2)$ to $N^2(d^2/z^2N^2)$

Allocations for STR p:

$$n_{h} = n \left(\frac{N_{i} \sqrt{p_{h}(1 - p_{h})/c_{h}}}{\sum_{k=1}^{L} N_{k} \sqrt{p_{k}(1 - p_{k})/c_{k}}} \right) \qquad n = \frac{\sum_{k=1}^{L} N_{k} p_{k}(1 - p_{k})/w_{k}}{N^{2}(d^{2}/z^{2}) + \sum_{k=1}^{L} N_{k} p_{k}(1 - p_{k})}$$

TABLE A.1

Cumulative Standardized Normal Distribution

A(z) is the integral of the standardized normal distribution from $-\infty$ to z (in other words, the area under the curve to the left of z). It gives the probability of a normal random variable not being more than z standard deviations above its mean. Values of z of particular importance:

1

Z	A(z)	
1.645	0.9500	Lower limit of right 5% tail
1,960	0.9750	Lower limit of right 2.5% tail
2.326	0.9900	Lower limit of right 1% tail
2.576	0.9950	Lower limit of right 0.5% tail
3.090	0.9990	Lower limit of right 0.1% tail
3.291	0.9995	Lower limit of right 0.05% tail

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6044 0.6103 0.6 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6848 0.6 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7 0.7 0.7580 0.7611 0.7642 0.7673 0.7794 0.7764 0.7794 0.7823 0.7 0.8 0.7881 0.7910 0.7995 0.8023 0.8051 0.8078 0.8165 0.8165 0.8165 0.8166 0.1 0.9 0.8159 0.8186 0.8212	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5359
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5753
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7 0.6 0.7257 0.7291 0.7324 0.7737 0.7744 0.7746 0.7794 0.7823 0.7 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7744 0.7823 0.7 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8150 0.8166 0.8166 0.8165 0.8160 0.1 0.8 0.8413 0.8465 0.8868 0.8729 0.8749 0.8770 0.8790 0.8810 0.1 1.1 0.8643 0.8666	5141
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7754 0.7794 0.7823 0.7 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8166 0.4166 0.4166 0.4166 0.4166 0.4166 0.4166 0.4166 0.4166 0.4166 0.4166 0.4166 0.4166 0.4166 0.4166 0.4166 0.4166 0.4166 0.4186 0.8210 0.115 0.4186 0.8260 0.8240 0.8270 0.8270 0.8270 0.8270 0.8210 0.115 0.9111 </td <td>5517</td>	5517
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7 0.7 0.7580 0.7611 0.7624 0.7673 0.7704 0.7744 0.7764 0.7794 0.7823 0.7 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8166 0.416 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8299 0.8315 0.8340 0.8365 0.3 1.0 0.8413 0.8465 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.3 1.2 0.8849 0.8865 0.8888 0.8907 0.8225 0.8944 0.8962 0.8980 0.8997 0.5 1.3 0.9032 0.9207 0.9222	5879
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7734 0.7764 0.7794 0.7823 0.7 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.4 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8477 0.8599 0.4 1.0 0.8413 0.8461 0.8485 0.8508 0.8311 0.8570 0.8770 0.8790 0.8810 0.4 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.3 1.2 0.8849 0.8866 0.8686 0.9909 0.9115 0.9131 0.9147 0.9162 0.921 0.9226 0.9306 0.211	7224
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7 0.8 0.7881 0.7910 0.7939 0.7667 0.7995 0.8023 0.8051 0.8078 0.8166 0.8166 0.100 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.3 1.0 0.8413 0.8465 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.1 1.2 0.8849 0.8665 0.8686 0.8708 0.8725 0.8944 0.8962 0.8980 0.8997 0.3 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9127 0.9162 0.9131 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9255 0.9515 0.9525 0.9306 0.9115 0.9525 0.9335 0.9116 0.9452 0.9463 0.9464 0.9656 0.9664 0.9671 0.9578 0.9515 <td< td=""><td>7549</td></td<>	7549
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8160 0.1 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8355 0.1 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.1 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.1 1.2 0.8643 0.8665 0.9682 0.9099 0.9115 0.9131 0.9147 0.9162 0.92 0.9306 0.1 1.4 0.9192 0.9207 0.9222 0.9236 0.9255 0.9515 0.9525 0.9535 0.116 0.9452 0.9463 0.9474 0.9484 0.9505 0.9515 0.9525 0.9535 0.17 1.6 0.9454 0.9564 0.9573 0.9582 0.9591 0.9503	7852
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.1 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.1 1.1 0.8643 0.8665 0.8686 0.8708 0.8709 0.8700 0.8709 0.8810 0.1 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.2 1.3 0.9032 0.9049 0.9066 0.9029 0.9115 0.9131 0.9147 0.9162 0.0 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.516 1.5 0.9332 0.9453 0.9457 0.9352 0.9591 0.9568 0.9616 0.9625 0.9115 1.6 0.9452 0.9463 0.9454 0.9456 0.9573 0.9578 <td>8133</td>	8133
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8389
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3621
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.3 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.3 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.1 1.5 0.9332 0.9345 0.9377 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.1 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.1 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0. 1.8 0.9641 0.9656 0.9673 0.9773 0.9778 0.9803 0.9808 0.8611 0.6686 0.9671 0.266 0.9770 0.9776 0.9776 0.9776 0.9776 0.9776 0.9812 0. 2.0 0.9778 0.9803	8830
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.306 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0. 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.3 1.6 0.9452 0.9463 0.9474 0.9482 0.9505 0.9515 0.9525 0.9525 0.9525 0.9525 0.9515 0.9525 0.9525 0.9516 0.9525 0.9516 0.9525 0.9525 0.9516 0.9525 0.9516 0.9525 0.9516 0.9525 0.9516 0.9525 0.9516 0.9525 0.9516 0.9525 0.9516 0.9525 0.9516 0.9525 0.9516 0.9525 0.9525 0.9516 0.9526 0.9516 0.9526 0.9516 0.9526 0.9517 0.9576 0.9716 0.9272 0.9576 0.9772	9015
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0. 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0. 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0. 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9731 1.8 0.9641 0.9564 0.9573 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0. 2.0 0.9772 0.9778 0.9783 0.9788 0.9798 0.9803 0.9808 0.9812 0. 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9844 0.9887 0. 2.2 0.9861 0.9866 0.9871 0.9875 0.9878	9177
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.1 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9525 0.9525 0.9525 0.9505 0.9616 0.9625 0.1 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.1 1.8 0.9641 0.9649 0.9656 0.9664 0.9678 0.9678 0.9698 0.9699 0.1 1.9 0.9713 0.9778 0.9778 0.9783 0.9788 0.9793 0.9780 0.9803 0.9808 0.9812 0. 2.0 0.9772 0.9778 0.9783 0.9783 0.9783 0.9784 0.9803 0.9808 0.9812 0. 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0. 2.2 0.9861 0.9868 0.9911 0.99913 0.9911	9319
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9441
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9545
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0. 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0. 2.0 0.9772 0.9778 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0. 2.1 0.9821 0.9826 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0. 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0. 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9911 0.9913 0. 2.4 0.9918 0.9920 0.9921 0.9924 0.9929 0.9931 0.9932 0.9934 0. 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9949 <t< td=""><td>9633</td></t<>	9633
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0. 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0. 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0. 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0. 2.3 0.9893 0.9866 0.9871 0.9975 0.9878 0.9881 0.9884 0.9887 0. 2.4 0.9918 0.9920 0.9922 0.9925 0.9921 0.9932 0.9931 0.9932 0.9931 0.9932 0.9933 0.9932 0.9931 0.9932 0.9931 0. 0.9932 0.9931 0. 0.9932 0.9931 0. 0.9933 0.9943 0.9945 0.9946 0.9948 0.9943 <td>9706</td>	9706
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0. 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0. 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.8550 0.8554 0. 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9884 0.9887 0. 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0. 2.4 0.9918 0.9924 0.9924 0.9925 0.9931 0.9932 0.9934 0. 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0. 2.6 0.9955 0.9956 0.9957 0.99590 0.9960 0.9971 <	9767
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0. 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9877 0. 2.3 0.9893 0.9866 0.9871 0.9875 0.9878 0.9909 0.9911 0.9913 0. 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0. 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0. 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0. 2.7 0.9965 0.9966 0.9967 0.9977 0.9977 0.9971 0.9972 0.9973 0. 2.8 0.9974 0.9975 0.9977 0.9977 0.9978 <t< td=""><td>9817</td></t<>	9817
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0. 2.3 0.9893 0.9866 0.9888 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0. 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0. 2.5 0.9938 0.9940 0.9945 0.9944 0.9946 0.9942 0.9951 0. 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9941 0.9962 0.9953 0. 2.6 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9953 0. 2.7 0.9965 0.9966 0.9967 0.9957 0.9977 0.9971 0.9972 0.9973 0. 2.8 0.9974 0.9975 0.9977 0.9977 0.9978 0.9979 0.9972 <t< td=""><td>9857</td></t<>	9857
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0. 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0. 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0. 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9961 0.9962 0.9963 0. 2.6 0.9955 0.9956 0.9957 0.9959 0.9961 0.9962 0.9963 0. 2.7 0.9965 0.9966 0.9967 0.9968 0.9970 0.9971 0.9972 0.9973 0. 2.8 0.9974 0.9975 0.9977 0.9977 0.9977 0.9979 0.9979 0.9980 0. 2.9 0.9981 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 0.9986 <t< td=""><td>9890</td></t<>	9890
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0. 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0. 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0. 2.7 0.9965 0.9966 0.9967 0.9969 0.9970 0.9971 0.9972 0.9973 0. 2.8 0.9974 0.9975 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0. 2.9 0.9981 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 <t< td=""><td>9916</td></t<>	9916
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0. 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9963 0. 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0. 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9979 0.9980 0. 2.9 0.9981 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 0.9986 0.9989 0.9985 0.9986 0.9989 0.9985 0.9986 0.9986 0.9987 0.9987 0.9985 0.9986 <td>9936</td>	9936
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0. 2.7 0.9965 0.9966 0.9967 0.9969 0.9970 0.9971 0.9972 0.9973 0. 2.8 0.9974 0.9975 0.9976 0.9977 0.9978 0.9979 0.9979 0.9980 0. 2.9 0.9981 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 0.9986 0.9989 0.9985 0.9986 0.9986 0.9985 0.9986 0.9986 0.9986 0.9987 0.9985 0.9986 <t< td=""><td>9952</td></t<>	9952
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0. 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9973 0. 2.9 0.9981 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 0. 3.0 0.9987 0.9987 0.9989 0.9989 0.9989 0.9989 0.99980	9964
2.8 0.9974 0.9975 0.9976 0.9977 0.9978 0.9979 0.9979 0.9980 0. 2.9 0.9981 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0. 3.0 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.	9974
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0. 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.	9981
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.	.9986
	.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9993 0.	.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.	.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.	,9997
3 4 6 9997 6 9997 0 9997 0 9997 0 9997 0 9997 0 9997 0 9997 0 9997 0 9997 0	9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0	.9998
3.6 0.9998 0.9998 0.9999	

STATISTICAL TABLES

	,			Significan	ce level		
Degrees of	Two-tailed test:	10%	5%	2%	1%	0.2%	0.1%
freedom	One-tailed test:	5%	2.5%	1%	0.5%	0.1%	0.05%
1		6.314	12.706	31.821	63,657	318.309	636,619
2		2.920	4,303	6.965	9.925	22.327	31.599
3		2.353	3.182	4.541	5.841	10.215	12.924
4		2.132	2.776	3.747	4.604	7.173	8.010
5		2.015	2.571	3.305	4.032	2,693	0.809
6		1.943	2.447	3.143	3.707	5.208	5.959
7		1.894	2.365	2.998	3.499	4.785	5.408
8		1.860	2.306	2.896	3.355	4.501	5.041
9		1,833	2.202	2.021	3 160	4.297	4.787
10		1.012	2.220	2.704	5.107		4,501
-11		1.796	2.201	2.718	3.106	4.025	4.437
12		1.782	2.179	2.681	3.055	3,930	4.318
13		1.771	2.100	2.030	2 077	3 787	4 140
14		1 753	2 131	2.602	2.947	3.733	4.073
15				0.000	0.001	2 (04	4.015
16		1.746	2.120	2.583	2.921	3.080	4.015
17		1.740	2.110	2.507	2.070	3 610	3 922
10		1 729	2.101	2.539	2.861	3.579	3,883
20		1.725	2.086	2.528	2.845	3.552	3.850
		1 701	2 080	2 610	2 921	3 537	3 810
21		1.721	2.080	2.518	2.651	3.505	3,792
23		1.714	2.069	2.500	2.807	3,485	3,768
23		1.711	2.064	2,492	2.797	3.467	3.745
25		1.708	2.060	2.485	2.787	3.450	3,725
26		1.706	2.056	2.479	2.779	3.435	3.707
27		1.703	2.052	2.473	2.771	3.421	3.690
28		1.701	2.048	2.467	2.763	3.408	3.674
29		1.699	2.045	2.462	2.756	3.396	3.659
30		1.697	2.042	2.457	2.750	3.385	3,040
32		1.694	2.037	2.449	2.738	3.365	3.622
34		1.691	2.032	2.441	2.728	3.340	3.587
36		1.088	2.028	2.434	2.717	3 310	3.566
38 40		1.684	2.021	2.423	2.704	3,307	3,551
40		1 6 8 2	2.018	2418	2,698	3.296	3.538
44		1.680	2.015	2.414	2.692	3.286	3.526
46		1.679	2.013	2.410	2.687	3.277	3.515
48		1.677	2.011	2.407	2.682	3.269	3.505
50		1.676	2.009	2.403	2.678	3.261	3.496
60		1.671	2.000	2.390	2,660	3.232	3.460
70		1.667	1.994	2.381	2.648	3.211	3.435
80		1.664	1,990	2.374	2.639	3,195	3.410
90		1.660	1.987	2.308	2.032	3 174	3 390
100		1.000	1.704	2.504	2.020	3 160	3 3 7 7 3
120		1.658	1.980	2.358	2.617	3,100	3.373
150		1.000	1.970	2.301	2.009	3.145	3.340~
300		1.650	1.968	2.339	2.592	3.118	3.323
400		1.649	1.966	2.336	2.588	3.111	3.315
500		1.648	1.965	2.334	2.586	3.107	3.310
600		1.647	1.964	2.333	2.584	3.104	3.307
80		1.645	1.960	2.326	2.576	3.090	3.291

TABLE A.2 t Distribution: Critical Values of t