UNIVERSITY OF SWAZILAND

Page 1 of 6

DEPARTMENT OF STATISTICS AND DEMOGRAPHY

MAIN EXAMINATION, 2013/14

COURSE TITLE:

OPERATIONS RESEARCH II

COURSE CODE:

ST 408

TIME ALLOWED: THREE (3) HOURS

INSTRUCTION:

ANSWER <u>QUESTION ONE</u> AND <u>ANY THREE</u> QUESTIONS QUESTION 1 CARRIES 40 MARKS AND THE OTHER FOUR QUESTIONS EACH CARRY 20 MARKS

SPECIAL REQUIREMENTS:

EMENTS: SCIENTIFIC CALCULATORS AND STATISTICAL TABLES

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

1

Page 2 of 6

Question 1

(A) The director of personnel of Management Resources Inc. is in the process of designing a program that its customers can use in the job-finding process. Some of the activities include preparing resumes, writing letters and making appointments to see prospective employers, researching companies and so on. Some of the information on activities is shown in the following table:

Days								
Activity	t	t	t _p	Immediate Predecessor				
A	8	10	12	-				
В	6	7	9	-				
С	3	3	4	-				
D	10	20	30	A				
Е	6	7	8	C				
F	9	10	11	B, D, E				
G	6	7	10	B , D , E				
Н	14	15	16	F				
Ι	10	11	13	F				
J	6	7	8	G, H				
K	4	7	8	I, J				
L	1	2	4	G, H				

(a)	Construct a network for this problem.	(6 marks)
(b)	Determine the expected time and variance for each activity	(12 marks)
(c)	Determine ES, EF, LS, LF and slack for each activity	(6 marks)
(d)	Determine the critical path and project completion time	(2 marks)
(e)	Determine the probability that the project will be finished in 70 days or less	(4 marks)

(B) The project described below has just begun and is scheduled to be completed in 11 weeks. If there is a penalty of E5 000 for each week that the project is late, what is the probability of incurring a penalty of at least E5 000?

Activity	Estimated time (weeks)	Standard deviation (weeks)
1-2	4	0.7
1-3	3	0.62
2-4	6	0.9
3-4	9	1.9 (10 marks)

Question 2

Swazi Agricultural Suppliers is developing a new fertilizer. If the company markets the product and it is successful, the company will earn E150, 000 profit; if it is unsuccessful, the company will loose E75, 000. In the past, similar products have been successful 60% of the time. At a cost of E15, 000, the effectiveness of the new fertilizer can be tested. If the test result is favourable, there is an 80% chance that the fertilizer will be successful. If the test result is unfavourable, there is only a 30% chance that the fertilizer will be successful. There is a 60% chance of a favourable test result and 40% chance of an unfavourable test result.

(a) Determine the company's optimal strategy.

(12 marks)

(b) Find Expected Value of Sample Information (EVSI) and the Expected Value of Perfect Information (EVPI)(8 marks)

Question 3

(a) Solve the minimal spanning tree problem in the network below. The numbers in the network represent distance in hundreds of meters.

(5 marks)

Page 4 of 6 (b) What is the shortest route from Node 1 to Node 16. All numbers represent kilometres between German towns near the Black Forest.

(5 marks)

(c) The road system around the hotel complex on International Drive (Node 1) to Disney World (Node 11) in Orlando, Florida is shown in the network below. The numbers by the nodes represent the traffic flow in hundreds of cars per hour. What is the maximum flow of cars from the hotel complex to Disney World?

ł,

(10 marks)

5

(6 marks)

Question 4

A wholesale manager sells packets of ginger biscuits at the following prices:

Unit Price
E5.00
E4.95
E4.90
E4.85

Ordering costs are E50, annual holding cost is 40 percent of the purchase price and monthly usage is 6 000 packets. Determine an order quantity that will minimize total cost and determine the minimum total cost. (20 marks)

Question 5

(a) The following information is available on a particular item:

Annual usage = 12,000 units; Ordering costs = 60 per order; item unit cost = 10; carrying cost is 10% of unit cost of the item and lead time = 10 days. Assuming that there are 300 working days a year; Determine:

(i)The economic order quantity and number of orders per year?

(ii) In the past two years, the usage rate has gone as high as 70 units per day. For a reordering system based on the inventory level, what should be the safety stock? What should be the reorder level at this safety stock? (4 marks)

(b) Trucks arrive at the loading dock of a wholesale grocery at the rate of 1.2 per hour. A single crew consisting of two workers can load a truck in about 30 minutes. Crew members receive \$50 per hour in wages and fringe benefits, and trucks drivers reflect an hourly cost of \$60. The manager is thinking of adding another member to the crew. The service rate would then be 2.4 trucks per hour. Assume rates are Poisson.

(i) Would the third crew member be economical?

(ii) Would a fourth member be justifiable if the resulting service capacity were 2.6 trucks per hour? (10 marks)

END OF EXAM!! 6

Appendix Tables 741

740 Appendix Tables

				•			S	tandard norm	aal density fi	inction		z
								Shaded a	area = $\Phi(z)$			0.0
												0.1
												0.2
												0.3
							Q	z				0.4
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09		0.5 0.6
	0002	0002	0003	0003	.0003	.0003	.0003	.0003	.0003	.0002		0.7
0.4	.0003	,0005	.0005	0004	.0004	.0004	.0004	.0004	.0004	.0003		0.1
1.3	C000,	.0003	.0005	0006	.0006	.0006	.0006	.0005	.0005	.0005		0.9
5.2	.0007	.0007	0000	0000	.0008	.0008	.0008	.0008	.0007	.0007		1.0
5.1	.0010	.0009	.0009	0012	.0012	.0011	.0011	.0011	.0010	.0010	120	î 1.:
3.0	.0015	.0015	.0015		0016	0016	0015	0015	.0014	.0014		1.2
2.9	,0019	.0018	.0017	.0017	.0010	.0010	.0013	0021	.0020	.0019		1.3
2.8	.0026	.0025	.0024	.0023	.0023	.0022	0079	0028	.0027	.0026		1.4
2.7	.0035	.0034	.0033	.0032	.0031	0000	.0029	0038	.0037	.0036		<u>'</u> 1
2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0057	0051	.0049	.0038		, I. 1
2.5	.0062	.0060	.0059	,0057	.0055	.0054	.0052	.0007	0044	0064		1 '
2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	8000.	.0000	10004		1
2.3	.0107	.0104	.0102	.0099	.0096	,0094	.0091	.0089	,0007	0110		1 (
2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0115	.0110		1.
2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0140	0192	2	2.0
2.0	.0228	.0222	.0217	.0212	.0207	.0202	· .0197	.0192	.0100	.0165	÷.	. 2.
	0297	0281	0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233		2.3
1.9	.0267	0357	0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294		2.3
1.0	.0333	0126	0477	0418	.0409	.0401	.0392	.0384	.0375	.0367		2.4
1.7	.0440	0537	0526	0516	.0505	.0495	.0485	.0475	.0465	.0455	3	2.
1.0	.0340	0655	0643	.0630	.0618	,0606	.0594	.0582	.0571	.0559		2.0
1.5	.0000	.0000	.0070	0764	0740	0735	0722	.0708	.0694	.0681		2.
1.4	.0808	.0793	.0778	.0704	.0747	0885	0869	.0853	.0838	.0823		2.
·1.3	.0968	.0951	.0934	1002	1075	1056	1038	.1020	.1003	.0985		2.9
1.2	.1151	.1131	.1114	1090	1271	1251	.1230	.1210	.1190	.1170		3.0
-1.1	.1357	.1335	.1314	1515	1407	1469	.1446	.1423	.1401	.1379		3.
-1.0	.1587	.1562	.1228	.1.7.2	.1776	1711	1695	1660	1635	.1611	1 1 1 1	3.2
-0.9	.1841	.1814	.1788	.1762	.1736	1077	1040	1077	1894	.1867		3.3
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1349	2206	2177	.2148		3.4
-0.7	.2420	.2389	.2358	.2327	.2296	.2200	2546	2514	2483	.2451		
-0.6	.2743	.2709	.2676	.2643	.2611		.2J40 1977	7943	2810	2776		
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2011	.2073		2121	State of the	
-0.4	3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121		
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3462		
-0.2	.4207	.4168	,4129	.4090	.4052	.4013	.3974	.3936	.3897	.3839		
-01	4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247		
0.0	5000	4960	4920	.4880	.4840	.4801	.4761	.4721	.4681	.4041	1.0	

	isie A.S. Standard Normal Curve Areas (cont.)							$\Phi(z)=P(Z\leq z)$		
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.535
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.575
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.614
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.651
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.687
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.754
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.838
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.862)
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888.	.8907	.8925	.8944	.8962	.8980	.8997	.901
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.917
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.944
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.954
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	9699	.970
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	. 976 1	.976
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.981
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.985
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.989(
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9910
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9930
2.5	.9938	.994 0	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.998
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0 ·	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.999
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	`.999 2	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994`	.9995	.9995	.999
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.999
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9999

•.

741