UNIVERSITY OF SWAZILAND

MAIN EXAMINATION 2014/15

TITLE OF PAPER: DEMOGRAPHIC METHODS

CORSE NUMBER: DEM 202

TIME ALLOWED: 3 HOURS

INSTRUCTIONS: ANSWER QUESTION 1 AND 2 AND ANY TWO QUESTIONS FROM SECTION B. ALL QUESTIONS ARE WORTH 25 MARKS EACH.

REQUIREMENTS: CALCULATOR

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

SECTION A: COMPULSORY

Question 1

a) What is standardization? Why is it necessary to standardize rates(4)
b) Back in 1950, the Crude Death Rates (CDRs) for Sweden and Japan were very similar, 10.0 and 10.9 deaths per 1000 respectively. The direct standardized rate for Japan using the Swedish age distribution as the standard was 15.7.
I. Explain what this standardized estimate means. (2)
II. Describe what the results say about the mortality levels in the two countries. (3)
c) The difference in crude death rates for Country A and B below is partly due to mortality differences and partly due to differences in age composition.
Decompose the death rates for the two populations to determine how much of the difference is due to each of the two components. (16)

Table 1: Population and Deaths (in thousands) by age, Countries A and B

Country A				Country B		
Age group	Population	Deaths	Population	Deaths		
$0-19$	6418.0	30.6	1415.2	1.5		
$20-39$	2736.1	4.8	1505.5	2.1		
$40-59$	1220.6	4.7	1062.2	7.4		
$60+$	588.0	8.0	742.3	34.1		
Total	$\mathbf{1 0 9 6 2 . 7}$	$\mathbf{4 8 . 1}$	$\mathbf{4 7 5 2 . 2}$	$\mathbf{4 5 . 1}$		

Question 2

a) Explain the difference between a ratio and rate. Provide an example for each type of measure. (3)
b) Is the Crude Birth Rate (CBR) a better index of fertility than the Crude Death Rate (CDR) is of mortality? Why or why not? (3)
c) If you only have census data on the age/sex structure of the population and total counts of births and deaths, how may you improve the index? (3)
d) In what way is the General Fertility Rate (GFR) a better measure of fertility than the CBR? (2)
e) What is the major limitation of using the period TFR to measure trends in fertility? (2)
f) Using the data presented in the table below, calculate the following:
i. Crude Birth Rate given that the total population is 4536994 (2)
ii. General Fertility Rate (2)
iii. Total Fertility Rate (5)
iv. Child -Woman Ratio given that the number of children aged 0-4 years in the population comprise 904394 males and 925080 females. (3)

Table 2: Female Population by age and births for a hypothetical population

Age group	No. of Women	Total Births
$15-19$	410352	56403
$20-24$	378163	97166
$25-29$	377011	93415
$30-34$	296799	57694
$35-39$	235697	34478
$40-44$	190328	13078
$45-49$	148534	4564
Total	$\mathbf{2 0 3 6 8 8 4}$	$\mathbf{3 5 6 7 8 0}$

SECTION B: ANSWER ANY TWO QUESTIONS

Question 3

a) Complete the following table. (15)

Table 3: Abridged life table for USA, 2004

Age	Population	Deaths	${ }_{n} \mathbf{M}_{\mathbf{x}}$	${ }_{\mathbf{n}} \mathbf{q}_{\mathbf{x}}$	$\mathbf{l}_{\mathbf{x}}$	${ }_{\mathbf{n}} \mathbf{d}_{\mathbf{x}}$	${ }_{\mathbf{n}} \mathbf{L}_{\mathbf{x}}$	$\mathbf{T}_{\mathbf{x}}$	$\mathbf{e}_{\mathbf{x}}$
$0-1$	1957337	11568			100000				
$1-4$	7965041	1991							
$5-9$	9580605	1245							
$10-14$	10307570	1546							
$15-19$	10092051	3835					495660	6573166	

b) In a certain country, the life expectancy at birth in 2007 was 77 years. Provide an explanation of what this means in terms understandable by non-demographers. (2)
c) Describe two uses of life tables. (4)
d) Use the data below to calculate crude incidence and prevalence rates per 100000 population: (4)

Total estimated population: 452780
Total cases of ADS: 850
Total new cases of AIDS: 95
Total deaths from AIDS: 595

Question 4

a) Define the following gross nuptiality table functions and provide the formula used for computing each function:
i. ${ }_{\mathrm{n}} \mathrm{H}_{\mathrm{x}} \quad$ (2)
ii. P_{x} (2)
iii. ${ }_{\mathrm{n}} \mathrm{L}_{\mathrm{x}} \quad$ (2)
b) Provide the formula for computing the singulate mean age at marriage (SMAM) and using the data given below, calculate the SMAM for females in England. (7)

Table 4: Proportions of Females Never Married, England, 1981

Age group	$\%$ single England
$15-19$	97.9
$20-24$	63.2
$25-29$	25.7
$30-34$	13.8
$35-39$	11.1
$40-44$	10.8
$45-49$	9.9
$50-54$	8.7

c) Why is it necessary to adjust the conventional infant mortality rate? (3)
d) Generally, there are 3 major reasons why people die. Discuss. (9)

Question 5

a) What are the limitations of the national growth rate method for estimating internal migration?(4)
b) What is the main difference between the forward survival ratio method and the reverse survival ratio method? (2)
c) List the sources of data that could be used for the analysis of migration. (3)
d) Using the life table forward survival ratio method, calculate
i. the number of net migrants for the age groups 15-19,20-24,35-39 and $40-44$ in 2001. (8)
ii. The net intercensal migration rates for the above age groups. (8)

Table 5: Net migration estimates for a coastal region

Age in 1996	Age in 2001	${ }_{5} \mathbf{S}_{\mathbf{x}}$ (survivorship ratio)	Population in 1996	Population in 2001
10-14	15-19	0.99672	98415	101045
15-19	20-24	0.99207	93957	101544
20-24	25-29	0.99259	84342	93220
25-29	30-34	0.99350	83598	92756
30-34	35-39	0.99301	70191	77853
35-39	40-44	0.98956	59982*	64334
40-44	45-49	0.98223	53313	55713
45-49	50-54	0.96979	55775	57715

Question 6

a) What data are needed to implement a cohort component projection?
b) You are given a female population (in 5 year age groups), a female life table, and age specific fertility rates for a population in 2010. List the steps you would need to take and the assumptions you would need to make to predict the number of females under age 5 in 2015? (6)
c) Define a Parity Progression Ratio. What data are required to compute the PPRs? (3)
c) Suppose a certain hypothetical birth cohort for women has the following parity progression ratios:
$\mathrm{P}_{1}=0.890$
$\mathrm{P}_{2}=0.857$
$\mathrm{P}_{3}=0.516$
$\mathrm{P}_{4}=0.416$

Assuming that no woman in this birth cohort had a fifth child, out of 1000 women calculate:
i) the number of women who remain childless (2)
ii) the number of women who have exactly one child? (2)
iii) the cohort total fertility rate (3)
e) Given the following births and infant deaths recorded in Belgium, calculate:
I. The conventional infant mortality rate for 1968. (2)
II. The adjusted infant mortality rate for 1968 using the cohort method (2)
III. The adjusted infant mortality rate for 1968 using the additive method (2)

Table 6: Births and Infant deaths in Belgium, 1967-69

Year	Birth Cohort	Age (yrs)	Deaths	Births
1967	1967	0	2893	142471
1968	1967	0	481	----
1968	1968	0	2603	138214
1969	1968	0	302	-----

