UNIVERSITY OF SWAZILAND

Page 1 of 4

DEPARTMENT OF STATISTICS AND DEMOGRAPHY

MAIN EXAMINATION, 2014/15

COURSE TITLE: MATHETHEMATICS FOR STATISTICS

COURSE CODE: ST 202

TIME ALLOWED: TWO (2) HOURS

INSTRUCTION:

ANSWER <u>ANY THREE</u> QUESTIONS ALL QUESTIONS CARRY EQUAL MARKS (20 MARKS)

1

SPECIAL REQUIREMENTS: SCIENTIFIC CALCULATORS

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

Question 1

The likelihood function of β , given a sample of size n=1 from a Gamma (α , β) distribution (with $\alpha = 2$), is written as

$$L(\beta) = \beta^2 x e^{-\beta x}.$$

(a) What value of β (in terms of x) will maximize $L(\beta)$? (10 marks) [Hint: Keep in mind that the differentiation of $L(\beta)$ is with respect to β and that x should be treated as a constant as far as β is concerned.]

(b) The natural logarithm of the likelihood function is called the log-likelihood function. What is the log-likelihood function of β for the Gamma (α, β) density? (Simplify the logarithm as much as possible.)

(5 marks)

 $\ln[L(\beta] = ?$

(c) Now, differentiate $\ln[L(\beta)]$ with respect to β to show that the same value of β that maximizes $L(\beta)$ in part (a) also maximizes $\ln[L(\beta)]$. (5 marks)

Question 2

(a) A national toy distributor determines the cost and revenue models for one of its games as:

 $C = 2.4x - 0.0002x^{2}, 0 \le x \le 6000$ $R = 7.2x - 0.001x^{2}, 0 \le x \le 6000$

Determine the interval on which the profit function is increasing. (6 marks)

(b) Simplify the logarithmic expressions:

(i) $3 \ln 2 - 2 \ln(x-1)$, (ii) $2 \ln x + \ln y - 3 \ln(z+4)$, (3 marks)

(c) Find the derivative of the functions:

(i)
$$y = e^{-3x} + 5$$
,
(ii) $y = \ln \frac{5x}{x+2}$, (4 marks)

(c) Find the second derivative of the function

 $f(x) = x \ln \sqrt{x} + 2x$ (3 marks)

(d) Find the first partial derivatives of $f(x, y) = xe^{xy}$, and evaluate it at the point (1, ln2)

(4 marks)

Page 3 of 4

Question 3

(a) Evaluate the function:

$$xe^{x^2}dx$$
 (3 marks)

(b)Let x and y be two continuous random variables having the joint probability density function given by:

 $f(x, y) = \begin{cases} 24xy, 0 < x < 1, 0 < y < 1, x + y < 1\\ 0, elsewhere \end{cases},$ Find $P(x > \frac{1}{2}, y < \frac{3}{4}),$ (5 marks)

(c) If X is Gamma distributed with α =2 and β =3, the probability density function for x will be given by:

$$f(x) = \frac{1}{9}xe^{-x_3}, for x > 0$$

(i)Determine the expected value and standard deviation of the distribution.(8 marks)(ii) Find P(x > 4)(4 marks)

Question 4

(a) Find A^{-4} for the following matrix:

$$A = \begin{bmatrix} 1 & 0 & 4 \\ 4 & 1 & -2 \\ 3 & 1 & -1 \end{bmatrix}$$
(7 marks)

(b) Solve the following linear system of equations using the method of determinants:

 $\begin{array}{l} x + & 4z = 4 \\ 4x + y - 2z = 0 \\ 3x + y - z = 2 \end{array}$ (7 marks)

		[2]			[0]
(c) Suppose	x =	0	and	y =	-1
		4_			3

Use vector algebra to find the least squares regression line through the set of points determined by vectors x and y. (6 marks)

Question 5

(10 marks)

(b) Solve the following system of equations using the Gauss-Jordan elimination method:

$$x + y + 2z = 9$$

$$2x + 4y - 3z = 1$$

$$3x + 6y - 5z = 0$$

(10 marks)

Page 4 of 4