Question 1

The likelihood function of β, given a sample of size $\mathrm{n}=1$ from a Gamma (α, β) distribution (with $\alpha=2$), is written as

$$
L(\beta)=\beta^{2} x e^{-\beta x}
$$

(a) What value of β (in terms of x) will maximize $L(\beta)$?
[Hint: Keep in mind that the differentiation of $L(\beta)$ is with respect to β and that x should be treated as a constant as far as β is concerned.]
(b) The natural logarithm of the likelihood function is called the log-likelihood function. What is the loglikelihood function of β for the Gamma (α, β) density? (Simplify the logarithm as much as possible.)
(5 marks)

$$
\ln [L(\beta]=?
$$

(c) Now, differentiate $\ln [L(\beta)]$ with respect to β to show that the same value of β that maximizes $L(\beta)$ in part (a) also maximizes $\ln [L(\beta)]$.
(5 marks)

Question 2

(a) A national toy distributor determines the cost and revenue models for one of its games as:

$$
\begin{aligned}
& C=2.4 x-0.0002 x^{2}, 0 \leq x \leq 6000 \\
& R=7.2 x-0.001 x^{2}, 0 \leq x \leq 6000
\end{aligned}
$$

Determine the interval on which the profit function is increasing.
(6 marks)
(b) Simplify the logarithmic expressions:
(i) $3 \ln 2-2 \ln (x-1)$,
(ii) $2 \ln x+\ln y-3 \ln (z+4)$,
(3 marks)
(c) Find the derivative of the functions:
(i) $y=e^{-3 x}+5$,
(ii) $y=\ln \frac{5 x}{x+2}$,
(4 marks)
(c) Find the second derivative of the function

$$
\begin{equation*}
f(x)=x \ln \sqrt{x}+2 x \tag{3marks}
\end{equation*}
$$

(d) Find the first partial derivatives of $f(x, y)=x e^{x y}$, and evaluate it at the point $(1, \ln 2)$
(4 marks)

Question 3

(a) Evaluate the function:

$$
\begin{equation*}
\int x e^{x^{2}} d x \tag{3marks}
\end{equation*}
$$

(b)Let x and y be two continuous random variables having the joint probability density function given by:

$$
f(x, y)=\left\{\begin{array}{c}
24 x y, 0<x<1,0<y<1, x+y<1 \\
0, \text { elsewhere }
\end{array}\right.
$$

Find $P(x>1 / 2, y<3 / 4)$,
(c) If X is Gamma distributed with $\alpha=2$ and $\beta=3$, the probability density function for x will be given by:

$$
f(x)=\frac{1}{9} x e^{-x / 3}, \text { for } x>0
$$

(i)Determine the expected value and standard deviation of the distribution.
(ii) Find $P(x>4)$

Question 4

(a) Find A^{-1} for the following matrix:

$$
A=\left[\begin{array}{ccc}
1 & 0 & 4 \\
4 & 1 & -2 \\
3 & 1 & -1
\end{array}\right]
$$

(b) Solve the following linear system of equations using the method of determinants:

$$
\begin{aligned}
& x+\quad 4 z=4 \\
& 4 x+y-2 z=0 \\
& 3 x+y-z=2
\end{aligned}
$$

(c) Suppose $x=\left[\begin{array}{c}2 \\ 0 \\ -4\end{array}\right]$ and $y=\left[\begin{array}{c}0 \\ -1 \\ -3\end{array}\right]$

Use vector algebra to find the least squares regression line through the set of points determined by vectors x and y.
(6 marks)

Question 5

(a) Find eigenvalues and eigenvectors of matrix $A=\left[\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$
(b) Solve the following system of equations using the Gauss-Jordan elimination method:

$$
\begin{aligned}
& x+y+2 z=9 \\
& 2 x+4 y-3 z=1 \\
& 3 x+6 y-5 z=0
\end{aligned}
$$

