SUPPLEMENTARY EXAMINATION, 2014/15

COURSE TITLE: MATHETHEMATICS FOR STATISTICS

COURSE CODE:

TIME ALLOWED:
TWO (2) HOURS

INSTRUCTION:

SPECIAL REQUIREMENTS:

ANSWER ANY THREE QUESTIONS
ALL QUESTIONS CARRY EQUAL MARKS (20 MARKS)

SCIENTIFIC CALCULATORS

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

Question 1

Integrate the following functions:
(5+5+5+5 marks)
(a) $\int x^{3}\left(3 x^{4}+1\right)^{2} d x$
(b) $\int x \sqrt{x^{2}+4} d x$
(c) $\int \frac{3 x^{2}}{\sqrt{1-x^{3}}} d x$
(d) $\int \frac{3\left(3 x^{2}+4 x\right)}{x^{3}+2 x^{2}} d x$

Question 2

If the joint probability density function of X and Y is given by:

$$
f(x, y)=\left\{\begin{array}{c}
\frac{1}{3}(x+y), \text { for } 0<x<1,0<y<2 \\
0, \text { elsewhere }
\end{array}\right\}
$$

(a) Find the mean and variance of X.
(b) Find the mean and variance of Y.

Question 3

(a) Suppose that the service life in hours of a semiconductor is a random variable having a Weibull distribution with $\alpha=0.025$ and $\beta=0.50$. The probability density function is given by:
$f(x, y)=\left\{\begin{array}{c}0.0125 x^{-0.5} e^{-0.025 x^{0.5}} \text { for } x>0 \\ 0, \text { elsewhere }\end{array}\right\}$
Find $P(x>4,000)$
(10 marks)
(a) Suppose that a random variable X has a Gamma distribution with $\alpha=3$ and $\beta=4$. The probability density function for this random variable X is given by:

$$
f(x)=\left\{\begin{array}{c}
\frac{1}{128} x^{2} e^{-x / 4}, \text { for }>0 \\
0, \text { elsewhere }
\end{array}\right\}
$$

Find the probability that the value of the random variable will exceed 4.
(10 marks)

Question 4

(a) The probability density function of a random variable X is given by:
$f(x)=\left\{\begin{array}{c}\frac{c}{\sqrt{x}}, \text { for } 0<x<4 \\ 0, \text { elsewhere }\end{array}\right\}$
Find
(i) the value of c ;
(ii) $P\left(X<\frac{1}{4}\right)$ and $P(X>1)$
(10 marks)
(b) State the Mean value Theorem. Determine the intervals on the x -axis on which the function:
$f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$ is increasing and the intervals on which it is decreasing
(10 marks)

Page 4 of 4

Question 5

(a) Find eigenvalues and eigenvectors of matrix $\mathrm{A}=\left[\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$
(10 marks)
(b) Solve the following system of equations using the Gauss-Jordan elimination method:

$$
\begin{array}{ll}
x+2 y & =1 \\
2 x+y+2 z & =-1 \\
-x+3 y & =4
\end{array}
$$

