UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER 2015

TITLE OF PAPER : INFERENTIAL STATISTICS
COURSE CODE : ST 220
TIME ALLOWED : TWO (2) HOURS
REQUIREMENTS : CALCULATOR AND STATISTICAL TABLES
INSTRUCTIONS : THIS PAPER HAS SIX (6). ANSWER ANY THREE (3) QUESTIONS.

Question 1

[20 marks, 12+8]
(a) One criterion that students may apply when choosing a university for undergraduate studies is the number of scheduled contact hours per week. However, different disciplines have developed teaching patterns best suited to their subject material. Typically, scientific and engineering subjects may require more contact hours to allow for structured programmes of lectures and laboratory sessions. In contrast, arts and humanities subjects require fewer contact hours to foster independent, creative and original analysis.
The table below shows the sample mean numbers of contact hours for ten discipline categories at two universities, A and B. The values have been obtained from samples of students in each discipline at each university. It is of interest to investigate whether there is a significant overall difference between the mean numbers of contact hours at these two universities.

Subject category	Mean number of hours at university A	Mean number of hours at university B
Medical Studies	20.1	20.3
Technology and Engineering	19.2	21.4
Law	11.6	12.3
Business and Management Studies	12.2	13.1
Philosophical and Historical Studies	8.2	7.9
Classics and Linguistics	10.1	10.7
Mathematics and IT	14.9	16.1
Physical and Biological Sciences	16.0	17.8
Urban, Regional and Architectural Studies	16.2	15.8
Media and Social Studies	12.0	12.8
TOTAL	140.5	148.2

Perform a t test at the 5% significance level to examine whether the difference in contact hours between the universities has a mean of zero. State your null and alternative hypotheses clearly and report your conclusions. State any assumptions made in carrying out the t test.
(b) In 2001, the Supreme Court, by a vote of 8-0, struck down state laws that legalized marijuana for medicinal purposes. The Gallup Organization later conducted surveys of randomly selected individuals ($18+$ years) and asked them whether they support the limited use of marijuana when prescribed by physicians to relive pain and șuffering. The results of the survey by age group, are as follows:

	Age		
Opinion	$\mathbf{1 8 - 2 9}$	$\mathbf{3 0 - 4 9}$	$\mathbf{6 0 +}$
For	172	313	258
Against	52	103	119

Is there evidence to indicate that the proportions of individuals in each age group who are for the legalization of marijuana for medicinal use if different at the $\alpha=0.01$ level of significance.

Question 2

[20 marks, $9+8+3$]
A city council is considering introducing a congestion charge for motorists travelling into or out of the city centre. The city is divided into ten administrative areas. In order to assess the popularity of such a measure, samples of residents from two of the administrative areas are asked whether or not they are in favour of the introduction of the congestion charge. The results are shown below.

	In favour of the charge	Not in favour of the charge
Area 1	61	95
Area 2	20	84

(a) Perform a χ^{2} test at the 5% significance level to investigate whether there is an association between the area of the city and the attitude to the proposed congestion charge. State your null hypothesis and report your conclusions.
(b) Estimate the proportions who are not in favour of the proposed congestion charge for each of the two areas and calculate an approximate 95% confidence interval fof the difference in these two proportions.
(c) You could perform a hypothesis test to examine whether there is a difference in the proportions of those who are not in favour of the proposed congestion charge in the two areas. Without performing this test, outline briefly how its results would relate to your answers to parts (a) and (b).

Question 3

[20 marks, $6+8+1+5]$
(b) The amount of a potentially toxic pollutant in the water of a river affects the edibility of mussels grown in its estuary. An environmental health officer has heard a report of a leak of this pollutant into the estuary and undertakes an investigation into how this has affected the mussel population. He takes a sample of ten mussels randomly from this population and measures the amount of the pollutant in parts per million (ppm) in each of them. These ten values are as follows.
$\begin{array}{llllllllll}39.5 & 38.6 & 44.9 & 36.4 & 45.6 & 46.6 & 36.1 & 32.3 & 35.0 & 35.5\end{array}$
(i) Calculate a 99% confidence interval for the population mean.

Official health guidelines state that mussels are safe to eat provided that the (population) mean level of pollutant does not exceed 36 ppm .
(i) Test, at the 1% significance level, whether or not the population mean level exceeds 36 ppm . State the null and alternative hypotheses and report your conclusions.
(ii) State briefly why the 99% confidence interval for the mean calculated in part (i) cannot be used directly to perform the required hypothesis test in part (iii).
(b) A blended wine is intended to comprise two parts of Sauvignon to one part of Merlot. The amounts dispensed to make up a nominal 75 cl bottle of this wine are $X \mathrm{cl}$ of Sauvignon and $Y \mathrm{cl}$ of Merlot, where X and Y are assumed to be independent Normally distributed random variables with respective means 52 and 26 cl and respective variances 1 and 0.5625 . Find the probability that the actual volume of wine dispensed into a bottle is less than the nominal volume.

Question 4

[20 marks, $8+8+4]$

(a) A manufacturer of luxury cosmetics has recently put a new product on the market. This product is initially being offered at a wide range of prices, and the company has made a survey of its sales y (in 100s) and prices x (in $£$) across a random sample of stores in which it is sold. It wishes to examine whether, on the whole, increased price is associated with reduced sales. The results are shown in the following table.

Store	1	2	3	4	5	6	7	8	9	10
Price $x(£)$	27	30	37	47	55	62	70	80	95	99
Sales $y(100 \mathrm{~s})$	110	79	69	48	51	44	29	32	26	30

A research assistant suggests calculating the product-moment correlation coefficient, r, between sales and prices. Carry out this calculation and test at the 1% significance level the null hypothesis of zero correlation against an appropriate one-sided alternative. You are given that

$$
\sum x=602, \quad \sum x^{2}=42202, \quad \sum y=518, \quad \sum y^{2}=33384, \quad \sum x y=25712 .
$$

(b) The vitamin content of the flesh of each of a random sample of eight oranges and of a random sample of five lemons was measured. The results are given in milligrams per 10 grams.

Oranges	1.14	1.59	1.57	1.33	1.08	1.27	1.43	1.36
Lemons	1.04	0.95	0.63	1.62	1.11			

(i) Estimate a 99% confidence interval for the difference between the mean vitamin contents. Based on the confidence interval would you conclude that the difference between the two means is significantly different from zero?
(ii) What assumption(s) were made in the computation of the above confidence interval?

Question 5

[20 marks, $4+8+4+4]$
(a) State the model and assumptions for the one-way analysis of variance, defining your notation.
(b) A commute in a large city can travel to work by car, bicycle or bus. She times four journeys by each method with the following results, in minutes.

Car	Bicycle	Bus
27	34	26
45	38	41
33	43	35
31	42	46

Carry out an analysis of variance and test at the 5% significance level whether there are differences in the mean journey times for the three methods of transport.
(c) A certain brand of beans is sold in tins, the tins being filled and sealed by a machine. the mass of beans in each tin is normally distributed with mean 425 g and a standard deviation of 25 g and the mass of the tin is normally distributed with mean 90 g and standard deviation 10 g .

Find the probabilities that the total mass of the sealed tin and its beans
(i) exceeds 550 g ,
(ii) lies between 466 g and 575 g .

Question 6

[20 marks, $2+8+4+3+3$]
100 men are surveyed as to whether they play cricket, tennis or golf. It is found that

- 10 play none of these sports
- 5 play all three of these sports
- 88 play cricket or tennis or both
- 78 play cricket or golf or both
- 30 play golf and tennis but not cricket
- 38 play golf
- 74 play tennis.

Find the following.
(a) The number of the men who play at least one of these sports.
(b) The number of the men who play exactly one of these sports.
(c) The number of the men who play exactly two of these sports.
(d) Of those who do not play golf, the proportion who play cricket.
(e) The mean number of sports played by these men.

APPENDIX 1：LIST OF STATISTICAL TABLES
TABLE 1
The standard normal distribution（ z ） This table gives the area under the standard normal curve between 0 and z i．e． $\mathrm{P}[0<\mathrm{Z}<z]$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
909	\％	Sug	cutes		48.818	489\％	\％${ }^{\text {a }}$	d ${ }^{6}$		gice
3）	408est	96483	93088			Stald	5080	20x		
3%	488）	4098）	385	2080		为安	208480	8．	946	8
8	Hesaty	940	91838				9	9	Whersed	\＆
8			80，		3ife	26．98	\％	\％	$0{ }^{3}$	（27）
8	Wetar	4085	4，	4，等）			4ex	4，\％		Whes
38	2004	9月	M	4	40238	－	8	2886	．	
0.8	53886	終敉	360	96\％	39 5\％		4，${ }^{3} 8$			
Wes	Stiskt	－19985	98930	58	49， 89	488	9， 0^{10}	\％	930	
4	138589		4des	948	－${ }^{3} 8$	239	4830\％	4 $x^{\text {cex }}$		
\％	－${ }^{\text {chen }}$	，放異	3640		dstat	4isk		页哑	5xat	＋em
13		38	53x ${ }^{2}$	40808	9，家空	，${ }^{\text {a }}$	2		2044	
\％		3885	Sice	［4）			0	48585	3s\％	（0）
\％	｜estar		29468	4 $\mathrm{S}_{6} 8$		2046			4estis	
4		4，${ }^{\text {a }}$	920888	－683戠	988：		24ich		9084．85	
\％	（f4083	gidet	－50		9，慗			20．4	9090	Atysh
18		3	的		5		80，40	3，${ }_{\text {d }}$		480
18	294ist				4， 8 9\％	St	9xas	20483	（18485	
－	5ext	64 49	84t5					－f694	340 ${ }^{\text {a }}$	3－3 ${ }^{\text {d }}$
\％	\％atib	4絞爯	203046	96489	938	ditat	24\％		4884	3stay
88	Hedze	3 \％cim			2\％	36		\％ 46		2趛
$8{ }^{\text {c }}$	4	3848				\％	8	特		59
3		\％ 48.8	40885	20，	（0） 5 \％	30440	5，	2×56	10483	2168
5	10， 848	34859	4988988	9uspay			$3 x^{4} 88$		4 58	348488
3	4048989	94880		4，493	90，46as	（b）	5		98484	
2		4， 3^{3}	36975		469\％		2， 29		34878	
\％ 6	484828		928980			\％				
S	Hedxts	20xter	93strat		48985	6为事还	（5cmey	（2）	cose	－
88		，			速		4，		csigib	40486\％
8	309939	4 4889	93845	6fyed	685	－ 485	3 19848	9，485	2083895	－ 68
30	83ist805		－840838	90698939	ancers	344833		994893	tores8：	949840
2			vecers	e.		Wex	6	4	4	
3.	de4895：	catast	164885	crexe	42x888	－			：	（0，ges
－4		6ixab		\％ 8 898	9，		4048	4 ${ }^{4} 8$	3×8	9，398
36		464888		，			－43948	\％		
56	48884	2） 4988	949838	4，48986	50888	［18888	848988	70489	449889	548989
\％	ctasieg	（4xg 8	3－4995	（9） 58985	\％es	38489	4，49859：	Stacie	Hater	29899959
${ }^{4}$	12942985	42489	－92egysis	80	8489	4，4gysim	3， 3 9ect	标44595	3048988	
4	（1）	3．48598						\％ 4048	3 ${ }^{\text {che }}$	24899\％
40	1880847	484898	10） 9	denserid	dexat	2 4	20，	2		8489896

TABLE 2
The t distribution
This table gives the value of $t_{\text {tever }}$ where n is the degrees of freedom

TABLE 3
The Chi－Squared distribution（ χ^{7} ） This table gives the value of χ^{2}（wha） where $d f$ is the degrees of freedom i．e．$-\mathrm{P}\left[\chi^{2}>\chi_{(\text {（t）}(a)}^{2}\right]$

TABLE 4 （a）
F distribution $(\alpha=0.05$ ）
The entries in this table are critical values of F for which the area under the curve to the right is equal to 0.05 ．

	Degrees of freedom for numerator										
		\％	\％	3	4	\because	\cdots	？	${ }^{8}$	\pm	\％
	，		20	枵哏？	28	等號	S	4．	－ 4 es	20	3
	－	家㤩	\＄	\％	\％	哏冓	199\％	4re	1985	\％	$\%$
	4	8	480	38	学	48.	\％	\％	5	6 \％	\％$\%$
	\％	\％	（9）${ }^{2}$	\％	5985	84，	8，	29\％	\％	\％	53
	3	5	5	4，	5.	\cdots		5	a	\％	88
	2	368	20	435	4	\％	8	31\％	$\%$	S 1	\％
	7	9\％	488	\％	90	39：	\％	8\％	s\％	\％	\％ 8
	8	5	4 4	4	20	\％	S	\％	\％	\％	\％ 6
	9	518	3\％ 8	3	9，	48	34：	8	3，${ }^{5}$	\because	\％
	40	458	－ 4	8	3	3is	：a	A iz	asi	s．	2
E	4	4	328	20	－	3	3，	\％	26	20\％	\％
E	\％	等	34	令越	084	\％	\cdots	\％			$\%$
$\stackrel{\square}{8}$	\％	4985	8＊	3 3：	28	\％	\％	28	38	\cdots	2
\％	\％	des	9x	384	83	\％ 8	3	38	20	3\％	䢒棌
E	嘘	4	\％	4	$8{ }^{\text {c }}$	3	3	2	36	\％	\％
\％	6	che	3	3%	atap	\％	8）	20	2\％	36	（4）
8	W	48	$3{ }^{36}$	5	98	$3{ }^{3}$	2 Cl	20：	\％s\％	388	\％
安	U8	209	34	名哭	268	4，	3 c	Ses	4．	4 A （i）	\％${ }_{6}$
吕	4	480	5	\％	䢒	哭枵	Te	Pe8	20 6		\％${ }^{3}$
	0	4	3040．	80，	38	2－	48	\％	0	\％s	23x
	2%	4	3097	29	489	运根	2		＊）	3\％	29
	\％	45		3	2，	206．	\％	30480	4	30．8．	S
	䞨	$4{ }^{4}$	34	䢒	200	384	\％	\％	4tex	\％	\％
	38	46	445	\％	248	20．	289	嵒为		3，${ }_{2}$	2x
	3	484	28	哭	3號	268	34	2ist	\％	\％	
	30	4，	䢒㦹	－2，	\％	25	2	68	4	8	46
	40	\％	3	at	20\％		20	\％	为	4	\％
	－ 56	4，		20．95	84．	\％	8	\％		20	\％
	409000	家	\％ 0	多施	240	5，	\％	Se	\％	\％	\％
	8	8	360	2	\％	8	3	20，	8	为	8

TABLE 4 (a) continued
F distribution ($\alpha=0.05$)

APPENDIX 2: LIST OF KEY FORMULAE

MEASURES OF CENTRAL LOCATION
Arithmetic mean
Ungrouped data
$\bar{x}=\frac{\sum_{i=1}^{n} x_{1}}{n}$
Grouped data

Mode Grouped data
$M_{\mathrm{s}}=\mathrm{O}_{\mathrm{mo}}+\frac{\mathrm{c}\left(f_{m}-f_{m-1}\right)}{2 f_{m}-f_{m-1}-f_{m+1}}$

Median
Grouped data
$M_{e}=O_{m e}+\frac{\left[\left[\frac{n}{2}-f(c)\right]\right.}{f_{m e}}$

Lower quartile
Grouped data
$Q_{1}=O_{91}+\frac{\left(\frac{n}{4}-f(c)\right)}{f_{91}}$

Upper quartile
Grouped data
$Q_{3}=O_{q 3}+\frac{d\left(\left.\frac{3 n}{7}-f(c) \right\rvert\,\right.}{f_{43}}$

Ungrouped data
$G M=\sqrt[n]{x_{1} \times x_{2} \times x_{3} \times \ldots \times x_{n}}$

Grouped data
weighted $\bar{x}=\frac{\Sigma f_{1}}{\Sigma f_{1}}$

MEASURES OF DISPERSION AND SKEWNESS

Range \quad Range $=$ Maximum value - Minimum value +1

$$
=x_{\max }-x_{\operatorname{mtn}}+1
$$

Variance Mathematical - ungrouped data

$$
s^{2}=\frac{\Sigma\left(x_{i}-\bar{x}\right)^{2}}{(n-1)}
$$

Computational - ungrouped data

$$
s^{2}=\frac{\sum x_{1}^{2}-n \bar{x}^{2}}{(n-1)}
$$

Standard $s=\sqrt{s^{2}}$

deviation
$\mathrm{CV}=\frac{5}{x} \times 100 \%$
variation

$$
\begin{align*}
& \text { Pearson's } s k_{p}=\frac{n \Sigma\left(x_{1}-\bar{x}\right)^{k}}{(n-1)(n-2) s^{3}} \\
& \text { oefficient of } \\
& \text { skewness } s k_{p}=\frac{3(\text { Mean }- \text { Median })}{\text { Standard deviation }}
\end{align*}
$$

(approximation)
approximanou)

PROBABILITY CONCEPTS

Conditional probability	$P(A / B)=\frac{P(A \cap B)}{P(B)}$	4.2
Addition rule	Non-mutually exclusive events	
	$P(A \cup B)=P(A)+P(B)-P(A \cap B)$	4.3
	Mutually exclusive events	
	$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$	4.4

Multiplication rule Statistically dependent events

Statistically independent events
$P(A \cap B)=P(A) \times P(B)$
$\boldsymbol{n}!=\boldsymbol{n}$ factorial $\quad n \times(n-1) \times(n-2) \times(n-3) \times \ldots \times 3 \times 2 \times 1 \quad 4.8$

Permutations $\quad{ }_{n} \mathrm{P}_{r}=\frac{n t}{(n-r)^{i}}$
Combinations $\quad{ }_{n} C_{r}=\frac{n t}{n!(n-r)!}$

PROBABILITY DISTRIBUTIONS

Binomial distribution	$={ }_{n} \mathrm{C}_{x} \mu^{r}(1-p)^{(n-x)} \quad$ for $x=0,1,2,3, \ldots, n \quad 5.1$	
	$\mathrm{P}(x$ successes $)=\frac{n!}{x(n-x)!} p^{r}(1-p)^{(1, x)}$	for $x=0,1,2,3, \ldots, n$
Binomial descriptive measures	Mean $\quad \mu=n p$ Standard deviation $\quad \sigma=\sqrt{n p(1-p)}$	5.2
Poisson distribution	$\mathrm{P}(x)=\frac{c^{+} a^{x}}{x+t} \quad$ for $x=0,1,2,3 \ldots$	5.3
Poisson descriptive measures	Mean $\quad \mu=a$ Standard deviation $\sigma=\sqrt{a}$	5.4
Standard normal probability	$z=\frac{x-\mu}{\sigma}$	5.6

CONFIDENCE INTERVALS

Single mean n large; variance known

Single proportion $p-z \sqrt{\frac{\sqrt{(1-p)}}{n}} \leq \pi \leq p+z \sqrt{\frac{p(1-p)}{n}}$

$$
\begin{equation*}
\bar{x}-z \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+z \frac{\sigma}{\sqrt{n}} \tag{71}
\end{equation*}
$$

(lower limit) (upper limit)
n small; variance unknown
$\bar{x}-t_{(n-1) \sqrt{n}} \leq \mu \leq \bar{x}+t_{(n-1)} \frac{s}{\sqrt{n}}$
(lower limit) (upper limit)
(lower limit)
(upper limit)

Variances unknown; n_{1} and n_{2} small
t-stat $=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{s_{p}^{2}\left[\frac{1}{m_{1}}+\frac{1}{n_{2}}\right)}}$ where $s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2} 9.2$

$$
\begin{array}{ll}
\text { Paired t-test } & t \text {-stat }=\frac{\bar{x}_{d}-\mu_{d}}{\frac{s_{t}}{\sqrt{1}}} \\
& \text { where } \mu_{d}=\left(\mu_{1}-\mu_{2}\right) \\
& \text { and } s_{d}=\sqrt{\frac{\Sigma\left(x_{d}-\bar{x}_{d}\right)^{2}}{n-1}}
\end{array}
$$

Differences

Chi-Squared $\quad x^{2}$-stat $=\sum \frac{\left(f_{a}-f_{e}\right)^{2}}{f_{e}}$

Overall mean $\overline{\bar{x}}=\frac{\Sigma \Sigma x_{i}}{N}$

Total sum of
squares (SSTotal) $=\sum_{i} \sum_{i}\left(x_{i j}-\overline{\bar{x}}\right)^{2}$
$\boldsymbol{S S T}=\sum_{i}^{k} n_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2}$
$\mathbf{S S E}=\sum_{i} \sum\left(x_{i j}-\bar{x}_{j}\right)^{2}$

SSTotal $=$ SST + SSE

$$
\text { MSTotal }=\frac{\text { SSTotal }}{N-1}
$$

$$
\text { MST }=\frac{\text { SST }}{k-1}
$$

MSE $=\frac{\text { SSE }}{N-k}$

