UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION PAPER 2016

TITLE OF PAPER :	QUANTITATIVE METHODS IN DEMOGRAPHY
COURSE CODE :	DEM 206
TIME ALLOWED :	TWO (2) HOURS
INSTRUCTIONS :	ANSWER ANY THREE QUESTIONS.
MARKS ALLOCATION :	ALL QUESTIONS CARRY 20 MARKS
REQUIREMENTS :	SCIENTIFIC CALCULATOR AND STATISTICAL TABLES.

Question 1

a.	What is a latent variable? Give an example	[3]
b.	State any two features of qualitative and quantitative data	[4]
c.	Define systematic random sampling and demonstrate how a researcher can select study subjects using the sampling procedure	[6]
d.	During a sports day of the Family Life Association of Swaziland (FLAS), the organizer knows that 60% of the male employees play cricket and 40% of the male employees play tennis. Further, the organizer knows that if a male employee play cricket, then the probability that the male employee will also play tennis is 0.6.	e 3
	C: Male employee plays cricket	
	T: Male employee plays tennis	

i) Are the events statistically independent?	[2]
ii) Are the events mutually exclusive?	[2]
iii) Calculate the probability that a randomly selected	d male employee plays tennis
or cricket?	[3]
	[20 Marks]

Question 2

a. State five and two properties of a Binomial and a Poisson experiment, respectively [7]

- b. Experience has shown that 30% of all persons afflicted by a certain illness recover. A drug company has developed a new medication. Ten people with the illness were randomly selected and received the medication; nine recovered shortly thereafter.
 What is the probability that at least nine of ten receiving the medication will recover? [5]
- c. Patients arrive at a clinic according to a Poisson distribution at an average of seven per hour. During a given hour, what are the probabilities that:

i) No more than three patients arrive?	[3]
ii) At least two patients arrive?	[3]
iii) Exactly five patients arrive?	[2]

[20 marks]

Question 3

a. Define a p-value

Hypothesis test	Test Statistic	p-value	Decision on a 5% level of significance
i) $H_0: p = .05$ $H_a: p < .05$	1.54	0.0618	
ii) $H_0: \mu_1 - \mu_2 = 0$ $H_a: \mu_1 - \mu_2 > 0$	Z = 1.75	0.0401	••••••
iii) $H_0: \mu_1 = 3.8$ $H_a: \mu_1 < 3.8$	Z = -0.996	0.1587	
		******	[6]

b. Complete the following table:

c. A Demography lecturer knows from past experience that the ratio of students failing, students passing and students passing with distinction is 1: 3: 1. From a random sample of 120 students enrolled in a particular year, 18 failed, 90 passed and the rest passed with distinction. Test, on a 5% level, whether the students performed as expected. [10]
 [20 marks]

Question 4

a. Two risk factors that have a bearing on the condition of the heart are fitness and cholesterol level. In a research project on this subject the amounts of unsaturated fats in the blood samples of 6 coronary patients and 10 marathon athletes were measured. The measurements in millimole per litre are summarized in the table below. Test, on a 1% level, if the assumption of equal variances can be made. [10]

Coronary patients (1)	Marathon athletes (2)	
$\bar{x}_1 = 1.8889$	$\bar{x}_2 = 0.9038$	
$s_1^2 = 0.8917$	$s_2^2 = 0.0901$	

b. The time (in minutes) it takes operators to fit a certain part before and after completing a training programme appears in the table below. Test, on a 5% level, whether the training programme significantly decreased the mean fitting time. [10]

Operator	Before Training	After training
1	23	17
2	17	14
3	16	12
4	15	13
5	19	12
6	21	20
7	13	14
8	20	15

[20 marks]

Question 5

- a. A study by Children's Hospital in Boston indicates that 67 % of American adults and about 15 % of children and adolescents are overweight. Thirteen children in a random sample of size 100 were found to be overweight. Is there sufficient evidence to indicate that the percentage reported by Children's Hospital is too high? Test at the $\alpha = 0.05$ level of significance. [10]
- b. The following data concerns the divorce rate, y, (in number of divorces per 1000 women) and the percentage of the female population in the labour force, x, over a period of 9 years:

Divorce rate, y (number of divorces per1000 women)	Percentage of female population in labour force, x	
3.0	18.9	
4.1	20.6	
4.7	25.4	
8.0	23.7	
7.5	24.8	
8.8	27.4	
10.3	31.4	
9.2	34.8	
14.9	42.6	

- i) Fit a least squares straight line to the data and write down the linear regression model which describes the relationship between percentage of female population in the labour force and divorce rate
- ii) If the correlation coefficient between percentage of female population in the labour force and divorce rate is equal to 0.945, what is its interpretation? [2]

[20 marks]

Table A-2The cdf of the Z Distribution (the Z Table)											
l ta	Number i blø repre P(z …	n the sents z)									
					z 0						
2	0,00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
-3.6	.0002	.0002	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	
-3.5	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.9002	
-34	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002	2002	
-33	.0005	CUUU.	CUUU.	.0004	.0004	.0004	.0004	.0004	.0003	3003	
-32	.9007	.0007	0000	0000	.0000	0000	.0000	CUUU.	0000	CUNU.	
-2.1	0100.	20009 0019	.0005	.0005	,0000	.0000	.0000	.0000	,0007	.0007	
-0.0	.0013	0010	0013	.0012	0012	0018	.0011	.0011	0010	- 0010 * 0014	
-2.8	.0028	.0025	.0014	.0023	.0023	.0072	.0013	.0021	.0020	.0019	
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026	
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036	
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048	
-24	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064	
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084	
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.01 19	.0116	.0113	.0110	
-21	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143	
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183	
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233	
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294	
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367	
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455	
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559	
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681	
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823	
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985	
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170	
-1.U	.1567	.1562	.1039	.1515	. 1492	.1469	.1440 1005	.1423	.1491 1675	.13/3	
	.1041	.1014	.1/65	.1702	.1/50 2005	.1/11	. 1000 1040	1000	1005	.1011	
U.8	.2119	.2030 2200	.2001 2250	.2000 17777	.2000 2200	.1377	. 1343 7790	.1344	. 1034 2177	.1007	
u./	27420	.2003 2700	.2330 2878	.2321 7887	.2230 2011	.2200 2572	.22.30 98.48	2200 251 k	2492	2451 2451	
-0.0	3085	3050	3015	2981	294R	2912	2877	7843	.2400	.2776	
-14	3446	3409	3372	3336	.3300	3264	.3228	3192	.3156	.3121	
-0.3	3821	3783	.3745	3707	3669	3632	3594	.3557	.3520	3483	
-0.2	4207	.4168	4129	.4090	,4052	,4013	.3974	.3936	.3897	.3859	
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	,4286	.4247	
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641	
	1			· · / · · ·							

,

Table A-2 (continued)

Number in the

table represents

P(z -- z)

							<			
Z	0.00	0.01	0.02	8.03	0.04	8.05	0.06	0.07	0.08	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
02	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
8.0	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888.	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
22	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
23	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	. 9 983	.9984	.9984	. 9 985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.99 91	. 9 991	.9992	.9992	.9992	.9992	.9993	.9993
32	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	. 9 995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9 997	.9997	.9997	.9997	.9998
3.5	.9998	.9 998	.9998	.9998	.9998	.9998	.9998	.9998	,9 998	.9998
3.6	.9998	.9998	.9999	,9999	.9999	.9999	.9999	.9999	.9999	.9999

0

Z

t Distribution: Critical Values of t

				Significa	nce level		
Degrees of f	Two-tailed test: One-tailed test:	10% 5%	5% 2.5%	2% 1%	1% 0.5%	0.2% 0.1%	0.1% 0.05%
1		6.314	12.706	31.821	63.657	318.309	636.619
2		2.920	4.303	6.965	9.925	22.327	31.599
3		2.353	3.182	4.541	5.841	10.215	12.924
4		2.132	2.776	3.747	4.604	7.173	8.610
5		2.015	2.571	3.365	4.032	5.893	6.869
6 7		1.943	2.447	3.143	3.707	5.208	5.959
9		1.094	2.303	2.998	3.499	4.785	5.408
8		1 833	2,300	2.890	3.333	4.501	3.041
10		1.812	2.228	2.764	3.169	4.144	4.587
11 .		1.796	2.201	2.718	3.106	4.025	4.437
12		1.782	2.179	2.681	3.055	3.930	4.318
13		1.771	2.160	2.650	3.012	3.852	4.221
14		1.761	2.145	2.624	2.977	3.787	4.140
15		1.753	2.131	2.602	2.947	3.733	4.073
16		1.746	2.120	2.583	2.921	3.686	4.015
17		1.740	2.110	2.567	2.898	3.646	3.965
18		1.734	2.101	2.552	2.878	* 3.610	3.922
19		1.729	2.093	2.539	2.861	3.579	3.883
20		1.725	2.086	2.528	2.845	3.552	3.850
21		1.721	2.080	2.518	2,831	3.527	3.819
22		1.717	2.074	2.508	2.819	3.505	3.792
23		1.714	2.069	2.500	2.807	3.485	3.768
24		1.711	2.064	2.492	2.797	3.467	3.745
25		1.708	2.060	2.485	2.787	3.450	3.725
26		1.706	2.056	2.479	2.779	3.435	3.707
27		1.703	2.052	2.473	2.771	3.421	3.690
28		1.701	2.048	2.467	2.763	3.408	3.674
29.		1.699	2.045	2.462	2.756	3.396	3.659
30		1.097	2.042	2.457	2.750	3.385	3.646
32		1.694	2.037	2.449	2.738	3.365	3.622
34		1.691	2.032	2.441	2.728	3.348	3.601
30		1.688	2.028	2.434	2.719	3.333	3.582
38 40		1.684	2.024	2.429	2.712 2.704	3.319	3.566
47		1 687	2.019	2 419	2 609	2 306	2 6 2 6
44		1.082	2.018	2.410	2.090	3.290	3,536
46		1.679	2.013	2.410	2.092	3 277	3 515
48		1.677	2.013	2.407	2.682	3 2 69	3 505
50		1.676	2.009	2.403	2.678	3.261	3.496
60		1.671	2.000	2.390	2.660	3.232	3.460
70		1.667	1.994	2.381	2.648	3.211	3.435
80		1.664	1.990	2.374	2.639	3.195	3,416
90		1.662	1.987	2.368	2.632	3.183	3.402
100		1.660	1.984	2.364	2.626	3.174	3.390
120		1.658	1.980	2.358	2.617	3.160	3.373
150		1.655	1.976	2.351	2.609	3.145	3.357
200		1.653	1.972	2.345	2,601	3.131	3.340
300		1.650	1.968	2.339	2.592	3.118	3.323
400		1.649	1.966	2.336	2.588	3.111	3.315
500		1.648	1.965	2.334	2.586	3.107	3.310
600		1.647	1.964	2.333	2.584	3.104	3.307
~		1.645	1.960	2.326	2.576	3.090	3.291

Critical Values of the *F*-Distribution ($\alpha = 0.005$)

	1	2	3	4	5	6	7	8	9
1	16210.7227	19999.5000	21614.7414	22499.5833	23055.7982	23437.1111	* 23714.5658	23925.4062	24091.0041
· 2 · · ·	198.5013	199.0000	199.1664	199.2497	199.2997	199.3330	199.3568	199.3746	199.3885
3	55.5520	49.7993	47.4672	46.1946	45.3916	44.8385	44.4341	44.1256	43.8824
. 4	31.3328	26.2843	24,2591	23,1545	22.4564	21,9746	21.6217	21.3520	21.1391
5	22.7848	18.3138	16.5298	15.5561	14.9396	14.5133	14.2004	13.9610	13.7716
6	18.6350	14.5441	12.9166	12.0275	11.4637	11.0730	10.7859	10.5658	10.3915
7	16.2356	12.4040	10.8824	10.0505	9.5221	9.1553	8.8854	8.6781	8.5138
8	14.6882	11.0424	9,5965	8.8051	8,3018	7.9520	7.6941	7.4959	7.3386
9	13.6136	10.1067	8.7171	7.9559	7.4712	7.1339	6.8849	6.6933	6.5411
- 10	12.8265	9.4270	8.0807	7.3428	6.8724	6.5446	6.3025	6.1159	5.9676
11	12.2263	8.9122	7.6004	6.8809	6.4217	6.1016	5.8648	5.6821	5.5368
12	11.7542	8.5096	7.2258	6.5211	6.0711	5,7570	5,5245	5:3451	5.2021
13	11.3735	8.1865	6.9258	6.2335	5.7910	5.4819	5.2529	5.0761	4.9351
14	11.0603 •	7.9216	6.6804	5.9984	5.5623	5.2574	5.0313	4.8566	4.7173
15	10.7980	7.7008	6.4760	5.8029	5.3721	5.0708	4.8473	4.6744	4.5364
16	10.5755	7.5138	6,3034	5.6378	5.2117	4.9134	4.6920	4.5207	4.3838
17	10.3842	7.3536	6.1556	5.4967	5.0746	4.7789	4.5594	4.3894	4.2535
18	10.2181	7.2148	6.0278	5.3746	4.9560	4.6627	4.4448	4.2759	4.1410
19	10.0725	7.0935	5.9161	5.2681	4.8526	4.5614	4.3448	4.1770	4.0428
20	9.9439	6.9865	5.8177	5.1743	4.7616	4.4721	4.2569	4,0900	3.9564
21	9.8295	6.8914	5.7304	5.0911	4.6809	4.3931	4.1789	4.0128	3.8799
22	9,7271	6.8064	5.6524	5.0168	4.6088	4,3225	4.1094	3.9440	3.8116
23	9.6348	6.7300	5.5823	4.9500	4.5441	4.2591	4.0469	3.8822	3.7502
. 24	9.5513	6.6609	5.5190	4.8898	4.4857	4.2019	3.9905	3.8264	3.6949
25	9.4753	6.5982	5.4615	4.8351	4.4327	4.1500	3.9394	3.7758	3.6447
26	9.4059	6,5410	5,4091	4.7852	4.3844	4.1027	3.8928	3,7297	3,5989
27	9.3423	6.4885	5.3611	4.7396	4.3402	4.0594	3.8501	3.6875	3.5571
28	9.2838	6.4403	5.3170	4.6977	4.2996	4.0197	3,8110	3.6487	3.5186
29	9,2297	6.3958	5.2764	4.6591	4.2622	3.9831	3.7749	3.6131	3.4832
30	9.1797	6.3547	5.2388	4.6234	4.2276	3.9492	3,7416	3.5801	3,4505
40	8.8279	6.0664	4.9758	4.3738	3.9860	3.7129	3.5088	3.3498	3.2220
60	8.4946	5,7950	4.7290	4.1399	3.7599	3,4918	3.2911	3,1344 🕬	3.0083
120	8.1788	5.5393	4.4972	3.9207	3.5482	3.2849	3.0874	2.9330	2.8083

7.8794 5.2983 4.2794 3.7151 3.3499 3.0913 2.8968 2.7444 2.6210

Numerator Degrees of Freedom

Denominator Degrees of Freedom

Table A-3

The Chi-Square Table

Numbers in the table represent Chi-square values whose area to the right equals p. df/p 0.10 0.05 0.025 0.01 0.005 1 2.71 3.84 5.02 6.64 7.88 2 4.61 5.99 7.38 9.21 10.60 3 6.25 7.82 9.35 11.35 12.84 4 7.78 9.49 11.14 13.28 14.86 5 9.24 11.07 15.09 12.83 16.75 6 10.65 12.59 18.55 14.45 16.81 7 12.02 14.07 16.01 18.48 20.28 8 13.36 15.51 17.54 20.09 21.96 9 14.68 16.92 19.02 21.67 23.59 10 15.99 18.31 20.48 23.21 25.19 11 17.28 19.68 21.92 24.73 26.76 12 18.55 21.03 23.34 26.22 28.30 13 19.81 29.819 22.36 24.74 27.69 14 21.06 23.69 26.12 29.14 31.32 15 22.31 25.00 27.49 30.58 32.80 16 23.54 26.30 28.85 32.00 34.27 17 24.77 27.59 30.19 33.41 35.72 18 25.99 28.87 31.53 34.81 37.16 19 27.20 30.14 32.85 36.19 38.58 20 28.41 31.41 34.17 37.57 40.00 21 29.62 32.67 35.48 38.93 41.40 22 30.81 33.92 36.78 40.29 42.80 23 32.01 35.17 38.08 41.64 44.18 24 33.20 36.42 39.36 42.98 45.56 34.38 25 37.65 40.65 46.93 44.31 35.56 26 38.89 45.64 41.92 48.29 27 36.74 40.11 43.20 46.96 49.65 28 37.92 41.34 44.46 48.28 50.99 29 39.09 42.56 45.72 49.59 52.34 30 40.26 43.77 46.98 50.89 53.67 40 51.81 55.76 59.34 63.69 66.77 50 63.17 67.51 71.42 76.15 79.49