UNIVERSITY OF SWAZILAND

TITLE OF PAPER : POPULATION ESTIMATES AND PROJECTIONS
COURSE CODE DEM 301
TIME ALLOWED : TWO (2) HOURS
INSTRUCTION : ANSWER ANY THREE QUESTIONS
REQUIREMENT SCIENTIFIC CALCULATOR

Question 1

a. Distinguish between demographic rates and ratio, give examples of each
b. Why is the demographic "balancing equation" so named?
c. Why are demographic rates often used in preference to figures on total numbers of births and deaths?
d. A country of Transylvania had 3.5 million people. In the year after the last census, there were 110900 new children born and 113,000 people died.
i. Assuming a sex ratio of 1.05 , how many of the Transylvania births are female? [2]
ii. What are the birth and death rates?
iii. What is the population growth rate?
iv. In how many years will the population double, using the exponential growth model?

Question 2

Table 1: Age specific fertility rates and female population for an African country, 20052015

Age of mothers	Age specific fertility rates $\left(\boldsymbol{f}_{\boldsymbol{a}}\right)$			Population $\left(\boldsymbol{P}_{\boldsymbol{a}}\right)$		
	$\mathbf{2 0 0 5}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 5}$
$15-19$	152	110	103	1,497	1,856	1,761
$20-24$	314	257	238	1,321	1,691	1,715
$25-29$	303	241	216	1,334	1,382	1,454
$30-34$	255	197	175	982	1,086	1,209
$35-39$	183	154	118	898	871	877
$40-44$	99	70	50	674	788	768
$45-49$	35	20	12	445	521	661

Use the data in Table 1 and apply Method B of the Period Fertility Method to calculate;
a. Expected births in 2005, 2010 and 2015
b. Projected medium births in 2005, 2010 and 2015
c. Projected medium female birth for the five year period, 2005-2010 and 2010-2015

Question 3

Explain the cohort component method for projecting an open population, focussing on the following;
a. Definition
b. General principles of computation
c. Data requirements
d. Modelling approach including the computational procedure for all the other age groups except for the youngest and open-ended age groups

Question 4

a. What is population momentum?
b. How can a population have a positive growth rate and a negative intrinsic growth rate?
c. Use the data in Table 2 to calculate the measures given below:

Table 2: Female age-specific birth rates and probabilities of survival for a Western population, 2000

Age group	Female ASFRs	Probability of survival
$\mathbf{1 5 - 1 9}$	0.01070	0.98612
$20-24$	0.04357	0.98375
$25-29$	0.06965	0.98134
$30-34$	0.04309	0.97876
$35-39$	0.01312	0.97529
$40-44$	0.00214	0.96957
$45-49$	0.00000	0.00000

Sex ratio at birth (SRB): 1.03
i. Total fertility rate [2]
ii. Net reproduction rate
iii. Mean length of a generation
iv. Intrinsic rate of natural increase
d. Assuming that a stable population has an intrinsic growth rate of 1.3% and had 82704
births in 2012. Using the exponential progression, estimate the births in the following years;
i. 1987
ii. 2023

