UNIVERSITY OF SWAZILAND

TITLE OF PAPER:

POPULATION ESTIMATES AND PROJECTIONS

COURSE CODE :

DEM 301

TIME ALLOWED:

TWO (2) HOURS

INSTRUCTION:

ANSWER ANY THREE QUESTIONS

REQUIREMENT: SCIENTIFIC CALCULATOR

Question 1

Distinguish between demographic rates and ratio, give examples of each [4] Why is the demographic "balancing equation" so named? [2] c. Why are demographic rates often used in preference to figures on total numbers of births and deaths? [2] d. A country of Transylvania had 3.5 million people. In the year after the last census, there were 110 900 new children born and 113,000 people died. Assuming a sex ratio of 1.05, how many of the Transvlvania births are female? [2] i. ii. What are the birth and death rates? [4] iii. What is the population growth rate? [3] In how many years will the population double, using the exponential growth iv.

Question 2

model?

Table 1: Age specific fertility rates and female population for an African country, 2005-2015

Age of mothers	Age specific fertility rates (f_a)			Population (P _a)		
	2005	2010	2015	2005	2010	2015
15-19	152	110	103	1, 497	1,856	1,761
20-24	314	257	238	1,321	1,691	1,715
25-29	303	241	216	1,334	1,382	1,454
30-34	255	197	175	982	1,086	1,209
35-39	183	154	118	898	871	877
40-44	99	70	50	674	788	768
45-49	35	20	12	445	521	661

Use the data in Table 1 and apply Method B of the Period Fertility Method to calculate;

a. Expected births in 2005, 2010 and 2015

[9]

b. Projected medium births in 2005, 2010 and 2015

[6]

c. Projected medium female birth for the five year period, 2005-2010 and 2010-2015

[5]

[20 marks]

[3]

Question 3

Explain the cohort component method for projecting an open population, focussing on the following;

a. Definition [2]
b. General principles of computation [3]
c. Data requirements [3]
d. Modelling approach including the computational procedure for all the other age groups except for the youngest and open-ended age groups [12]

Question 4

a. What is population momentum?

[2]

[20 marks]

b. How can a population have a positive growth rate and a negative intrinsic growth rate?

[2]

c. Use the data in Table 2 to calculate the measures given below:

Table 2: Female age-specific birth rates and probabilities of survival for a Western population, 2000

Age group	Female ASFRs	Probability of survival
15-19	0.01070	0.98612
20-24	0.04357	0.98375
25-29	0.06965	0.98134
30-34	0.04309	0.97876
35-39	0.01312	0.97529
40-44	0.00214	0.96957
45-49	0.00000	0.00000

Sex ratio at birth (SRB): 1.03

i.	Total fertility rate	[2]
ii.	Net reproduction rate	[3]
iii.	Mean length of a generation	[3]
iv.	Intrinsic rate of natural increase	[4]

d. Assuming that a stable population has an intrinsic growth rate of 1.3% and had 82 704 births in 2012. Using the exponential progression, estimate the births in the following years;

i. 1987 ii. 2023 [2]

[20 marks]