UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION PAPER 2016

TITLE OF PAPER	:	POPULATION ESTIMATES AND PROJECTIONS
COURSE CODE	:	DEM 301
TIME ALLOWED	:	TWO (2) HOURS
INSTRUCTION	:	ANSWER ANY THREE QUESTIONS
REQUIREMENT	:	SCIENTIFIC CALCULATOR

Question 1

Residence	Population (1997)	Population (2007)		
Rural	715,290	793,156		
Urban	214,428	225,293		

Table 1: Total population by Rural-Urban Residence, Swaziland 1997-2007

Use the data in Table 1 to answer the questions below:

	[20 ma	rks]
d.	Calculate the projected populations in 2027 and 2027 in each residence	[8]
v .		[8]
C.	Calculate the projected percentages of the population in 2017 and 2027 in each reside	ence
b.	Calculate the annual average percentage change in each residence	[2]
a.	Calculate the annual exponential growth rate of Swaziland in 1997-2007	[2]

Question 2

Briefly define the following terms and give examples and formulas where applicable:

a.	Intrinsic growth rate	[5]
b.	Mid-year population	[5]
c.	Non-censal counts	[5]
d.	Logistic curve	[5]

[20 marks]

Question 3

Describe each of the methods for population estimation given below and outline their computational procedures including the relevant formulas:

a.	Period-fertility method, Method A	[10]
b.	Census cohort change method	[10]

[20 marks]

Question 4

•

.

and a di

Table	: 2:	Po	pulation	of Italy	and	Uganda	in	2000	and 2016	0
										-

Country	Population			
	July 1 st 2000	July 1 st 2010		
Italy	56,986,000	60,555,000		
Uganda	24,213,000	33,425,000		

Use the data in Table 2 to calculate the following indicators:

a.	Annual rate of change between 2000 and 2010 for each country using the geo	metric
	and exponential methods	[8]
b.	The time required for the population to double for each country using the geo	metric
	method	[4]
c.	Calculate the expected population of each country in April 16 th , 2025 using the	he
	geometric growth model	[6]
d.	Assuming a continuation of the 2000-2010 geometric growth rate and using 2	010 as
	the base date, when will the population of Uganda reach 70 million?	[2]
	[20	marks]