UNIVERSITY OF SWAZILAND

MAIN EXAMINATION 2017

TITLE OF PAPER: DEMOGRAPHIC METHODS

COURSE NUMBER: DEM 202

TIME ALLOWED: 3 HOURS

INSTRUCTIONS: ANSWER QUESTION 1 AND ANY THREE QUESTIONS. ALL QUESTIONS ARE WORTH 25 MARKS EACH.

- REQUIREMENTS: CALCULATOR

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

Question 1 (Compulsory)

a. Define and present the formulae for calculating the crude death rate and the age specific death rate (4)
b. Are these age indicators a) above dependent? Explain (2)
c. Why is it necessary to standardize rates? Which type of standardization do you prefer and why? (4)
d. How is the standard population selected? (3)
e. Using the indirect method of standardization compare and discuss the death rates for country A and B using the data provided in table 1 below (12)
Table 1: Data from hypothetical countries

Age groups	Country A Population	Country B Populatio \mathbf{n}	Standard Population death rates per 1000
$0-4$	560	440	7.50
$5-24$	1800	1620	2.25
$25-44$	1820	1800	3.15
$45-64$	1440	1560	17.50
$65+$	620	700	117.50
All ages			
Crude death rate			$\mathbf{1 8 . 5 5}$
Actual Deaths	$\mathbf{1 1 6 3 6 0}$	$\mathbf{1 1 3 1 7 0}$	

Question 2

a) If a cohort is defined as "professional soccer players," and the relevant life experience is defined as starting with the first game played as a professional and ending with the last game played as a professional, which of the following would not be a possible attrition factor? (3)
i. career-ending injury
ii. retirement
iii. death
iv. all of the above are possible attrition factors
c) Use the data presented in Table 1 below to compute the eventual probabilities of death for cause of death 1 and cause of death 2 . Show all your calculations. (20)

Table 1: Distribution of life table deaths by cause for males in country X, 1960

Age	${ }_{\mathbf{n}} \mathbf{d}_{\mathbf{x}}$	$\mathrm{n}_{\mathbf{x}}$	$\mathbf{I}_{\mathbf{x}}$	Deaths	Deaths 1	Deaths 2
$0-1$	7230	0.07230	100000	2235	538	2
$1-4$	2566	0.02765	92770	654	140	13
$5-9$	768	0.00851	90204	142	10	8
$10-14$	569	0.00636	89436	87	1	5
$15-19$	570	0.00641	88867	72	2	4
$20-24$	793	0.00899	88298	87	0	6
$25-29$	712	0.00814	87504	67	0	7
$30-34$	854	0.00984	86792	70	2	4
$35-39$	1287	0.01497	85938	86	2	10
$40-44$	1849	0.02184	84651	103	1	23
$45-49$	2629	0.03175	82802	136	0	20
$50-54$	3615	0.04509	80173	159	3	46
$55-59$	4975	0.06498	76558	176	2	55
$60-64$	7979	0.11146	71583	233	4	74
$65-69$	10564	0.16609	63605	246	3	62
$70-74$	12107	0.22826	53040	246	5	47
$75-79$	13002	0.31765	40933	220	3	44
$80-84$	13724	0.49135	27931	169	5	23
$85+$	14207	1.0000	14207	154	5	13

d) Based on your calculations above, provide answers for the following questions:
I. How many people die due to cause of death 1 after age 10? (1)
II. Among 100000 newborn children, how many will die at age 0 due to cause of death 2? (1)

Question 3

a) Define the following:
I. Attrition factors
II. Right censoring (2)
III. Migration expectancy (2)
b) What assumptions are made when constructing a clinical life table?
c) Consider a prospective study designed to study time to death. The study involves 20 participants who are 65 years and older, enrolled over a 5 year period followed up to 24 years until they dies or the study ends or they drop out. The table below indicates when they enrolled and what subsequently happened to them during the observation period. Summarize the experience of the participants by constructing a clinical life table. (15)

Table 2: Cohort study designed to study time to death

Participant Identification Number	Year of death	Year of last contact
1		24
2	3	
3		11
4		19
5		24
6	14	13
7		
8		2
9		18
10		17
11		24
12		21
13		12
14		10
15		6
16		
17		9
18		
19		
20		

Question 4

a) A net nuptiality table is a type of double decrement table. Which are the forces of decrement and which state is being decremented? (3)
b) Define the following net nuptiality notation and provide a formula for their calculation: (10)
i. $1000 \mathrm{q}_{\mathrm{x}}$
ii. $d^{\prime}{ }_{x}$
iii. L_{x}^{\prime}
iv. $\mathrm{T}_{\mathrm{x}}^{\prime}$
v. e_{x}^{\prime}
c) Specify one disadvantage of migration expectancy as a measure of the occurence of migration? (2)
d) Using the data provided in Table 3 below, compute the migration expectancy for the United States. (10)

Table 3: Migration expectancy for the United States, 1997-98

Age	Total population (in thousands)	Movers $(1997-98)$	$\mathbf{l}_{\mathbf{x}}$	T_{x}
$1-4$	15802	3552	99268	396721
$5-9$	20453	3526	99118	495329
$10-14$	19663	2755	99022	494883
$15-19$	19466	2864	98905	493650
$20-24$	17613	5607	98519	491362
$25-29$	18996	5442	98020	488766
$30-34$	20358	4267	97487	485746
$35-39$	22691	3568	96795	481820
$40-44$	21771	2570	95881	476549
$45-49$	18634	1798	94651	469305
$50-54$	15424	1242	92946	458779
$55-59$	12190	916	90406	443132
$60-64$	10065	574	86630	419530
$65-69$	9361	439	80870	385659
$70-74$	8512	389	73056	339620
$75-79$	6898	276	62422	280047
$80-84$	4383	186	49276	207474
$85+$	2928	130	36629	204073
Total	265208	40101		

Question 5

a. What is a difference between a cohort and a period rate? (3)
b. Using data in table 3 answer the questions below
i) What is the conventional infant mortality rate in year 1968 ?
ii) What is the adjusted infant mortality rate for 1968 using the Cohort method? (3)
iii) Do the rates above differ? If so, why do they differ and which one would you prefer as a better indicator of infant mortality experience of this population? (2)
iv) What is the rationale behind adjusting the infant mortality rate? (3)

Table 3. You are given the following births and infants deaths recorded in Country X in 1967 and 1968.

Year	Births cohorts	Age (yrs)	Deaths	Births
1967	1967	0	2893	142471
1968	1967	0	481	-
1968	1968	0	2603	138214
1969	1968	0	302142471	-

c. Define maternal mortality rate (2)
d. Using the data provided in table 4 calculate the maternal mortality rate and maternal mortality ratio for Country Y in 1990. (4)

Table 4: Data from Country Y in 1990

Births	4158212
Maternal deaths	343
Women aged 15-49	65624

Question 6

a) What assumptions are made for the use of censored data? (4)
b) What data are required for constructing a net nuptiality table? (2)
c) Give 3 uses of the net nuptiality table. (6)
d) What is the intrinsic growth rate of a population?
e) Outline 3 characteristics of a stable population. (3)
f) At the start of the $20^{\text {th }}$ century, China had an estimated R_{\circ} of 0.81297 and R_{1} of 23.52850. Calculate the mean length of a generation in China and the population's intrinsic rate of natural increase. (3)
g) Using the data for a growing Western population given in Table 4 below, compute the intrinsic growth rate for the population. (5)

Table 4: Data for a growing Western population, 2000

Age	Mid point	Female ASFRs	Survival probability $\mathbf{(5 \mathbf { L } _ { \mathbf { x } } / \mathbf { 5 } \mathbf { 1 } _ { \mathbf { 0 }) }}$
$15-19$	17.5	0.97914	
$20-24$	22.5	0.01326	0.97703
$25-29$	27.5	0.04324	0.97421
$30-34$	32.5	0.07112	0.97061
$35-39$	37.5	0.02906	0.96577
$40-44$	42.5	0.00506	0.95870
$45-49$	$\mathbf{4 7 . 5}$	0.90013	

