UNIVERSITY OF SWAZILAND

DEPARTMENT OF STATISTICS AND DEMOGRAPHY

FINAL EXAMINATION 2017

TITLE OF PAPER	: INDIRECT TECHNIQUES OF DEMOGRAPHIC ESTIMATION
COURSE CODE	: DEM 303
TIME ALLOWED	: THREE (3) HOURS
INSTRUCTIONS	: ANSWER FOUR QUESTIONS
1	: SHOW ALL YOUR FORMULAE AND WORKINGS.
REQUIREMENTS	: CALCULATOR

REQUIREMENTS : CALCULATOR

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

Question 1

A demographer assessing parity data for a certain developing country observed its poor quality and decided to apply an el-Badry technique. Given this information:
a. Briefly explain three possible errors that could have generated poor parity data;
b. State any two reasons that could have justified the demographer's application of the el-Badry technique on the observed data?
c. What are the data requirements for the el-Badry technique?
d. State one assumption of the el-Badry technique;

After using the el-Badry technique, the demographer decided to use the Brass P / F ratio method to estimate fertility.
e. Which assumptions are required to apply the P / F ratio method?
f. The demographer obtained a decreasing trend in the P / F ratios with age of the women. Explain what the derived P / F ratios for this developing country imply;
g. Explain two advantages of using the Brass P / F ratio method.

Question 2

Table 2.1 presents the data needed to compute Coale's indices for Country A in year 1984. The estimated total number of births in Country A in 1984 was $3,789,050$ and there was a negligible amount of illegitimacy.

Table 2.1 Data for calculating Coale's indices for Country A, 1984

Age group	Hutterite marital ASFRs, 1921-30	Natural fertility $n(a)$	Deviation from fertility $v(a)$	Estimated population (000s)	
	All women	Married women			
$15-19$	0.300	0.411	0.000	3899	2490
$20-24$	0.550	0.460	0.000	3201	2938
$25-29$	0.502	0.431	-0.279	2737	2481
$30-34$	0.447	0.395	-0.667	2221	2001
$35-39$	0.406	0.322	-1.042	1901	1621
$40-44$	0.222	0.167	-1.414	1432	1997
$45-49$	0.061	0.024	-1.671	1200	821

Using the data provided in Table 2.1:
a. Compute Coale's Indices of I_{g}, I_{g} and I_{m};
b. Comment on your answers in part b);
c. Without any computation or derivation, write down the two formulae to estimate the CoaleTrussell fertility schedule of M and m scale parameters;
d. Compute the M and m scale parameters using your formulae shown in part c).

Question 3

a. State three uses of the Brass logit life table system;
b. What is the advantage of using a logit life table system rather than an empirical model life table?;
c. The Brass logit life table system is expressed as follows:

$$
\begin{equation*}
\lambda\left(l_{x}\right)=\alpha+\beta \lambda\left(l_{x}^{s}\right) \tag{2}
\end{equation*}
$$

i. Explain in brief what is meant by the mathematical expression above?
ii. Write down the formula for computing $\lambda\left(l_{x}\right)$.
d. The values of α and β in the logit model life table are obtained after fitting a straight line in some way.
i. State the procedure on how to obtain that straight line;
ii. Which commands in excel would you write to obtain α and β values?
iii. Give the formulae for α and β you would use to get the same answers as in part d(ii) when using a calculator;
iv. Using your formulae in d (iii) and data given in table below, calculate α and β

age	standard logits	observed logits
1	-1.70593	-2.05952
5	-1.5524	-1.83178
55	-1.05987	-0.95938
65	-0.7579	-0.69315

e. Provide a formula you would use to derive a fitted life table using the parameters derived above.

Question 4

Describe in detail ANY ONE of the following indirect estimation methods:
a. Widowhood method; OR
b. Orphanhood method.

Note: Your answer should be arranged to describe the method in terms of the following:
i) Purpose or rationale;
ii) Data required;
iii) Brass procedure computational steps, formulae may not be provided; AND
iv) Assumptions; OR
v) Limitations, any two needed.

