UNIVERSITY OF SWAZILAND

MAIN EXAMINATION PAPER 2017
TITLE OF PAPER : PROBABILITY THEORY
COURSE CODE : ST 201
TIME ALLOWED : 3 HOURS
INSTRUCTIONS : ANSWER ANY FIVE QUESTIONS.
REQUIREMENTS : SCIENTIFIC CALCULATOR

Question 1

a) If $\mathrm{P}(\mathrm{A})=0.25$ and $\mathrm{P}(\mathrm{B})=0.8$, the show that $0.05 \leq \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq 0.25$.
(5 Marks)
b) Let A and B be Events in a sample space Ω such that $P(A)=\frac{1}{2}=P(B)$ and $P\left(A^{c} \cap B^{c}\right)=$ $\frac{1}{3}$. Find $P\left(A \cup B^{c}\right)$.
(5 Marks)
c) A box of fuses contains 20 fuses, of which 5 are defective. If 3 of the fuses are selected at random and removed from the box in succession without replacement, what is the probability that all three fuses are defective?
d) Suppose box A contains 4 red and 5 blue chips and box B contains 6 red and 3 blue chips. A chip is chosen at random from the box A and placed in box B. Finally, a chip is chosen at random from among those now in box B . What is the probability a blue chip was transferred from box A to box B given that the chip chosen from box B is red?
(5 Marks)

Question 2

A continuous random variable X has a cumulative distribution function:

$$
F_{X}(x)=\left\{\begin{array}{c}
0, \text { if } x \leq 0 \\
\sqrt{x}, \text { if } 0<x \leq 1 \\
1, \text { if } x>1
\end{array}\right.
$$

a) Find the probability density function of X.
(4 Marks)
b) Calculate the expectation and variance of X.
c) Calculate the lower quartile of X .
(4 Marks)

Question 3

a) The random variable X is uniformly distributed on the interval (0,1). Derive the PDF of the random variable $\mathrm{Y}=-\ln \mathrm{X}$.
b) Consider two independent random variables X_{1} and X_{2}, distributed exponentially with $\lambda=1$. That is,

$$
f_{X}(x)=\left\{\begin{array}{l}
e^{-x}, x \geq 0 \\
0, \text { otherwise }
\end{array}\right.
$$

Calculate the PDF of $X_{1}+X_{2}$.

Question 4

If the joint moment generating function of the random variable X and Y is

$$
M(s, t)=\exp \left(s+3 t+2 s^{2}+18 t^{2}+12 s t\right)
$$

What is the Covariance of X and Y ?

Question 5

a) Let X and Y be random variables such that X has density function

$$
f_{X}(x)=24 x^{2} \quad, \quad 0<x<\frac{1}{2}
$$

and the conditional density of Y given $\mathrm{X}=x$ is

$$
p(y \mid x)=\frac{y}{2 x^{2}}, \quad 0<y<2 x
$$

What is the conditional density of X given $\mathrm{Y}=y$ over the appropriate domain?
(10 Marks)
b) Let the joint density of two random variables x and y be given by

$$
f(x, y)=\frac{1}{6}(x+4 y), \quad 0<x<2,0<y<1
$$

Find the probability of $X \leq 1$ given that $y=\frac{1}{2}$.
(10 Marks)

Question 6

a) Let X and Y be discrete random variables with joint density

$$
p(x, y)=\frac{x+2 y}{18}, x=1,2 ; y=1,2
$$

What is the covariance $\sigma_{X Y}$ between X and Y .
(15 Marks)
b) If $\operatorname{Var}(X+Y)=3, \quad \operatorname{Var}(X-Y)=1, \quad E(X)=1$, and $E(Y)=2$, the what is $E(X Y)$?
(5 Marks)

Question 7

a) Let X and Y be discrete random variables with joint probability mass function

$$
p(x, y)=\frac{1}{21}(x+y), \quad x=1,2,3 ; y=1,2
$$

What is the conditional mean of X given $\mathrm{Y}=y$, that is $E(X \mid y)$?
(10 Marks)
b) Let X and Y be continuous random variables with joint probability density function

$$
f(x, y)=e^{-y}, \quad 0<x<y<\infty
$$

What is the conditional variance of Y given that $X=x$?
(10 Marks)

Question 8

a) Let each of the independent random variables X and Y have the density function

$$
f(x)=e^{-x}, \quad 0<x<\infty
$$

What is the joint density of $U=X$ and $V=2 X+3 Y$ and the domain on which this density is positive?
(10 Marks)
b) Let X and Y be independent random variables, each with density function

$$
f(x)=\lambda e^{-\lambda x}, \quad 0<x<\infty
$$

where $\lambda>0$. Let $U=X+2 Y$ and $V=2 \mathrm{X}+\mathrm{Y}$. What is the joint density of U and V ?
(10 Marks)

