UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION PAPER 2017

TITLE OF PAPER	: STATISTICAL INFERENCE II
COURSE CODE	: ST 303
TIME ALLOWED	: 2 HRS
REQUIREMENTS	: CALCULATOR
INSTRUCTIONS	: ANSWER ANY THREE QUESTIONS

DO NOT OPEN THIS PAPER UNTIL PERMISSION IS GIVEN BY THE INVIGILATOR

,

Question 1

If the random variable Y has a probability density function given by;

$$f(y;\theta) = \theta a^{\theta} / y^{(\theta+1)}, \qquad y > a, \theta > 0, a > 0,$$

a) Find the method of moments estimate of θ .

b) Find the MLE, and asymptotic variance of the MLE.

(14 Marks)

(6 Marks)

Question 2

Suppose

$$f(y; \theta) = \theta e^{-\theta y}, \quad y > 0, 1 \le i \le n$$

Show that this is an exponential family form distribution, with natural parameter $\pi = -\theta$. Find the sufficient statistic and its distribution, and find the MLE for each π , θ . (5+5+5+5 Marks)

Question 3

Let X_1, \ldots, X_n be independent, identically distributed with common density function

$$f(x; \omega) = \omega \exp(-\omega x), \quad x > 0, \omega > 0$$

It is required to estimate $= 1/\omega$. Find the Bayes estimator of θ , under squared error loss function, and assuming a prior density on ω of the form

 $\pi(\omega) \propto \omega^{\alpha-1} \exp(-\gamma \omega),$

With known $\alpha > 0$ and $\gamma > 0$. Find the bias, if any, of the Bayes estimator. Giving your reasoning, find the minimum variance unbiased estimator of θ , and its variance.

(8+6+6 Marks)

Question 4

a) Assume $X_1, ..., X_{25}$ are iid N(μ ,100). Consider the following test $H_0: \mu \le 4$ versus $H_1: \mu > 4$. Suppose we reject H_0 if $\overline{X} > 7.92$. Compute the type I error when $\mu = 2$. Compute the type II error when $\mu = 6$. Find the significance level α .

(10 Marks)

b) Assume $X \sim Gamma(2,\beta)$, in which the density is

$$f(x) = \frac{1}{\beta^2} x e^{-x/\beta}.$$

Consider the following test $H_0: \beta \le 1$ versus $H_1: \beta > 1$. Suppose we reject H_0 if X > 4.

Page 2 of 3

Compute the type I error , and type II error when $\beta = 2$. Find the significance level α . (10 Marks)

Question 5

Suppose the household incomes in Swaziland have a probability distribution with pdf

$$f(x) = \frac{\theta v^{\theta}}{x^{\theta+1}}, \quad v \le x \le \infty$$

where $\theta > 0$ is unknown and $\nu > 0$ is known. Let x_1, x_2, \ldots, x_n denote the incomes for random sample of *n* households. We wish to test the null hypothesis $\theta = 1$ against the alternative hypothesis that $\theta \neq 1$.

a) Show that the generalised likelihood ratio test statistic, $\lambda(x)$, satisfies

$$ln\{\lambda(\mathbf{x})\} = n - \ln(\hat{\theta}) - \frac{n}{\hat{\theta}}$$

(8 Marks)

b) Show that the test fails to reject the null hypothesis if

$$k_1 < \sum_{i=1}^n \ln(x_i) < k_2$$

and state how the values of k_1 and k_2 may be determined.

(12 Marks)