UNIVERSITY OF SWAZILAND

MAIN EXAMINATION PAPER 2017

TITLE OF PAPER	PROBABILITY THEORY II
COURSE CODE	STA 212
TIME ALLOWED	2 HOURS
INSTRUCTIONS	ANSWER ANY THREE QUESTIONS.
REQUIREMENTS	SCIENTIFIC CALCULATOR AND STATISTICAL TABLES.

Question 1

If the joint moment generating function of the random variable X and Y is

$$
M_{X Y}(s, t)=\exp \left(s+3 t+2 s^{2}+18 t^{2}+12 s t\right)
$$

What is the Covariance of X and Y ?

Question 2

a) Let X and Y be random variables such that X has density function

$$
f_{X}(x)=24 x^{2} \quad, \quad 0<x<\frac{1}{2}
$$

and the conditional density of Y given $\mathrm{X}=x$ is

$$
p(y \mid x)=\frac{y}{2 x^{2}}, \quad 0<y<2 x
$$

What is the conditional density of X given $\mathrm{Y}=y$ over the appropriate domain?
b) Let the joint density of two random variables x and y be given by

$$
f(x, y)=\frac{1}{6}(x+4 y), \quad 0<x<2,0<y<1
$$

Find the probability of $X \leq 1$ given that $y=\frac{1}{2}$.

Question 3

a) Let X and Y be discrete random variables with joint density

$$
p(x, y)=\frac{x+2 y}{18}, x=1,2 ; y=1,2
$$

What is the covariance $\sigma_{X Y}$ between X and Y .
b) If $\operatorname{Var}(X+Y)=3, \quad \operatorname{Var}(X-Y)=1, \quad E(X)=1$, and $E(Y)=2$, the what is $E(X Y)$?

Question 4

a) Let X and Y be discrete random variables with joint probability mass function

$$
p(x, y)=\frac{1}{21}(x+y), \quad x=1,2,3 ; y=1,2
$$

What is the conditional mean of X given $\mathrm{Y}=y$, that is $E(X \mid y)$?
b) Let X and Y be continuous random variables with joint probability density function

$$
f(x, y)=e^{-y}, \quad 0<x<y<\infty
$$

What is the conditional variance of Y given that $X=x$?
(10 Marks)

Question 5

a) Let each of the independent random variables X and Y have the density function

$$
f(x)=e^{-x}, \quad 0<x<\infty
$$

What is the joint density of $\mathrm{U}=\mathrm{X}$ and $\mathrm{V}=2 \mathrm{X}+3 \mathrm{Y}$ and the domain on which this density is positive?
(10 Marks)
b) Let X and Y be independent random variables, each with density function

$$
f(x)=\lambda e^{-\lambda x}, \quad 0<x<\infty
$$

where $\lambda>0$. Let $\mathrm{U}=\mathrm{X}+2 \mathrm{Y}$ and $\mathrm{V}=2 \mathrm{X}+\mathrm{Y}$. What is the joint density of U and V ?

