UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMUNATION PAPER 2017

```
TITLE OF PAPER : PROBABILITY THEORY II
COURSE CODE : STA 212
TIME ALLOWED : 2 HOURS
INSTRUCTIONS : ANSWER ANY THREE QUESTIONS.
REQUIREMENTS : SCIENTIFIC CALCULATOR
```


Question 1

a) The random variables $X_{1}, \ldots ., X_{4}$ have a joint p.d.f. given by

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{3}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right), \quad 0<x_{i}<1, i=1,2,3,4
$$

i) Use the joint probability density function to compute

$$
P\left(X_{1}<1 / 2, X_{2}<3 / 4, X_{3}<1, X_{4}>1 / 2\right)
$$

ii) Compute the marginal probability density function of $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$
(7 Marks)
b) If X and Y have the joint p.d.f. $f(x, y)=c e^{-x} e^{-2 y}$ for $0<x<1$ and $x<y<1$, what the value of the constant is c ?

Question 2

a) Let the joint density of two random variables X and Y be given by

$$
f(x, y)=(0.6 x+0.6 \times 4 y), \quad 0<x<2, \quad 0<y<1
$$

Find the conditional distribution of X given y.
b) Let the joint density of two random variables X and y be given by

$$
f(x, y)=\frac{-3 x^{2} \log (y)}{2(1+\log (2)-2 \log (4)}, \quad 0 \leq x \leq 1, \quad 2 \leq y \leq 4
$$

Are X and Y independent random variables?

Question 3

a) Let $X \sim U(-1,1)$ and let $Y=X^{2}$. Find $\operatorname{Cov}(X, Y)$.
b) Let the joint $p d f$ of X and Y be

$$
f(x, y)=10, \text { for } x<1 ; x<y<x+0.1
$$

Find the correlation coefficient between X and Y

Question 4

Suppose the random variable X and Y are independent and are Gamma distributed with parameters (α, λ) and (β, λ) respectively
i.e. $f_{x}(x)=\frac{\lambda^{\alpha} \chi^{\alpha-1} \exp (-\lambda x)}{\Gamma(\alpha)}, \quad x \geq 0, \alpha, \lambda>0$
with a similar expression for $f_{r}(y)$.
By calculating the joint density function of $(X+Y$ and X / Y, show that these random variables are independent and that $\mathrm{X}+\mathrm{Y}$ has the Gamma $(\alpha+\beta, \lambda)$ distribution. Find the probability density function of X / Y. Why are $\mathrm{X}=\mathrm{y}$ and Y / X independent? What is the probability density function of Y / X ?
(20 Marks)

Question 5

Two tennis players, A and B , are playing a match. Let X be the number of serves faster than 125 km / h served by A in one of his service games and let Y be the number of these serves returned by B . The following probability model is proposed:

$$
P(X=0)=0.4, P(X=1)=0.3, P(X=2)=0.2 \text { and } P(X=3)=0.1 .
$$

The conditional distribution of Y (given that $\mathrm{X}=x>0$) is binomial with parameters x and 0.4 , and $P(Y=0 \mid X=0)=1$. Assume that this model is correct when answering the following questions.
(a) Find the joint probability distribution of X and Y and display it in the form of a two-way table.
(7 Marks)
(b) Find the marginal distribution of Y and evaluate $\mathrm{E}(\mathrm{Y})$.
(4 Marks)
(c) Find $\operatorname{Cov}(X, Y)$.
(4 Marks)
(d) Use your joint probability distribution table to find the probability distribution of the number of serves faster than $125 \mathrm{~km} / \mathrm{h}$ that are not returned by B in a game.
(5 Marks)

