UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION PAPER 2017/2018

TITLE OF PAPER : DISTRIBUTION THEORY COURSE CODE : ST301
TIME ALLOWED : TWO (2) HOURS
REQUIREMENTS : CALCULATOR
INSTRUCTIONS : ANSWER ANY THREE QUESTIONS

Question 1

(a) Components in a machine fail and are replaced according to a Poisson process of rate 4 a month.
(i) Find the probability that exactly 4 fail in the first month and exactly 8 fail in the first two months.
(ii) Find the probability that at least 2 fail in the first month and at least 4 fail in the first 2 months.
(b) A population starts off with just one female. Each female lives for a fixed time T and then dies. The number of offspring of a single female is given by the following probability distribution:

m	0	1	2
p_{m}	0.3	0.4	0.3

Different female are independent. Let $G_{n}(s)$ denote the probability generating function of the number of females at the $\mathrm{n}^{\text {th }}$ generation and write $G_{1}(s)=G(s)$. Write down the polynomial expression for $G(s)$. Working from first principles use a first step argument to show that

$$
G_{2}(s)=G(G(s)
$$

Hence deduce the probability distribution of the females in the second generation.

Question 2

[20 marks, $10+4+6$]
(a) Let $N \sim \operatorname{Poisson}(\mu)$. Define the random variable

$$
Y= \begin{cases}X_{1} \sim \operatorname{Exponential}(\lambda) & N>0 \\ X_{2} \sim \operatorname{Exponential}(2 \lambda) & N=0\end{cases}
$$

where N, X_{1} and X_{2} are independent of each other. Derive the moment generating function of Y, and find $E(Y)$ and $\operatorname{Var}(Y)$.
(b) Let X and Y be two independent standard normal random variables. Consider random variables U and V such that X and Y can be represented by

$$
\left\{\begin{array}{l}
X=U \cos V \\
Y=U \sin V
\end{array}\right.
$$

You are given some useful properties of \sin and cos functions:

$$
\frac{d}{d x}(\sin x)=\cos x, \quad \frac{d}{d x}(\cos x)=-\sin x, \quad \sin ^{2}(x)+\cos ^{2}(x)=1
$$

Also, over $[0,2 \pi), \sin \geq 0$ for $x \in[0, \pi]$ and $\cos x \geq 0$ for $\sin [0, \pi / 2]$ of $[3 \pi / 2,2 \pi)$,
(i) Give the respective ranges for U and V in order that the transformation defined is one to one. With this, find U and V in terms of X and Y.
(ii) Find the joint probability density of $f_{U, V}(u, v)$ of U and V.

Question 3

(a) A markov chain $Z_{t}, t=0,1,2, \cdots$ on the state space $\mathcal{S}=\{1,2,3,4,5\}$ has the transition probability matrix

$$
\mathbf{P}=\begin{aligned}
& \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0 & 0.3 & 0.3 & 0.2 & 0.2 \\
0 & 0 & 0.3 & 0.3 & 0.4 \\
0 & 0 & 0 & 0.4 & 0.6 \\
0 & 0 & 0 & 0.6 & 0.4
\end{array}\right)
$$

with the two-step transition probability matrix

$$
\mathbf{P}=\begin{gathered}
\\
1 \\
2 \\
3 \\
4 \\
5
\end{gathered}\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0.04 & 0.10 & 0.1 * 6 & 0.34 & 0.36 \\
0 & 0.09 & 0.18 & 0.35 & 0.38 \\
0 & 0 & 0.09 & 0.45 & 0.46 \\
0 & 0 & 0 & 0.52 & 0.48 \\
0 & 0 & 0 & 0.48 & 0.52
\end{array}\right)
$$

(i) If the initial probability distribution is

$$
\{0.2,0.2,0.2,0.3,0.1\}
$$

what is $\mathbb{P}\left(Z_{2}=4\right.$ or 5$)$?
(ii) Determine the mean time to reach state 4 or 5 starting from state 1 using a first step analysis.
(b) Let $Z_{t}, t=0,1,2, \cdots$ be a Markov chain on a finite state space $\mathbb{S}=\{1,2, \cdots, n\}$. State the Markov property clearly. Define the 1 -step transition probabilities

$$
p_{i j}=\mathbb{P}\left(Z_{t+1}=j \mid Z_{t}=i\right) \quad i, j \in \mathfrak{S}, \quad t=0,1,2, \cdots
$$

Using the Markov property, show

$$
\mathbb{P}\left(Z_{2}=j \mid Z_{0}=i\right)=\sum_{k=1}^{n} p_{i k} p_{k j}
$$

where $i, j \in \mathcal{S}$.

Question 4

[20 marks, $8+2+4+6$]
(a) A markov chain $Z_{t}, t=0,1,2, \cdots$ on the state space $\mathfrak{E}=\{1,2,3\}$ has the transition probability matrix

$$
\mathbf{P}=\begin{gathered}
1 \\
2 \\
3
\end{gathered}\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0.5 & 0.5 \\
0.6 & 0 & 0.4 \\
0.3 & 0.7 & 0
\end{array}\right)
$$

Explain why the stationary distribution exists. Find the stationary probability distribution.
(b) A markov chain $Z_{t}, t=0,1,2, \cdots$ on the state space $\mathfrak{S}=\{1,2,3,4,5\}$ has the transition probability matrix

$$
\mathbf{P}=\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 0 & 0 & 0 \\
0.3 & 0 & 0.7 & 0 & 0 \\
0.7 & 0 & 0 & 0.3 & 0 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

(i) Which states are absorbing?
(ii) Find the probability of absorption occurs at state 5 starting from state 3. (You need to set up the difference equations by first step analysis and solve them.)
(c) Let $Z_{t}, t=0,1,2, \cdots$ be a Markov chain on a finite state space $\mathfrak{S}=\{1,2, \cdots, n\}$. State the Markov property clearly. Define the 1 -step transition probabilities

$$
p_{i j}=\mathbb{P}\left(Z_{t+1}=j \mid Z_{t}=i\right) \quad i, j \in \mathfrak{S}, \quad t=0,1,2, \cdots
$$

Using the Markov property, show

$$
\mathbb{P}\left(Z_{2}=j \mid Z_{0}=i\right)=\sum_{k=1}^{n} p_{i k} p_{k j}
$$

where $i, j \in \mathfrak{S}$.

Question 5

[20 marks, $3+9+8$]
Let X and Y be random variables with joint density

$$
f_{X, Y}(x, y)= \begin{cases}k e^{-\lambda x}, & 0<y<x<\infty \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find k.
(b) Derive the marginal density for Y and hence evaluate $E(Y), E\left(Y^{2}\right)$ and $\operatorname{Var}(Y)$.
(c) Derive the conditional density, $\int_{X \mid Y}(x \mid y)$, and the conditional expectation, $E[X \mid Y]$. Hence or otherwise, evaluate $E(X)$ and $\operatorname{Cov}(X, Y)$.

Question 6

[20 marks, $4+5+2+5+4]$

(a) The number of claims received at an insurance company during a week is a random variable with mean 20 and variance 120. The amount paid in each claim is a random variable with mean 350 and variance 10000 . Assume that the amounts of different claims are independent.
(i) Suppose this company received exactly 3 claims in a particular week. The amount of each claim is still random as already specified. What are the mean and variance of the total amount paid to these 3 claims in this week?
(ii) Assume that in one week, all claims received the same payment of 300 . What is the mean and variance of the total amount paid in this week?
(b) Let Z be a random variable with density

$$
f_{Z}(z)=\frac{1}{2} e^{-|z|}, \quad \text { for } 0<z<\infty
$$

(i) Show that f_{Z} is a valid density.
(ii) Find the moment generating function of Z and specify the interval where the MGF is welldefined.
(iii) By considering the cumulant generating function or otherwise, evaluate $E(Z)$ and $\operatorname{Var}(Z)$.

