UNIVERSITY OF SWAZILAND

| TITLE OF PAPER : PROBABILITY THEORY II | |
| :--- | :--- | :--- |
| COURSE CODE $:$ | STA 212 |
| TIME ALLOWED : | |
| | |
| | |
| INSTRUCTIONS $:$ | |
| | |
| ANSWER ANY THREE QUESTIONS. | |
| | |
| REQUIREMENTS : SCIENTIFIC CALCULATOR AND | |

Question 1

The joint probability mass function of the lifetimes X and Y of two connected components in a machine can be modelled by $p(x, y)=\frac{e^{-2}}{x!(y-x)!}$ for $x=0,1, \ldots$ and $y=x, x+1, \ldots$
a) What is the marginal distributions of X and Y ?
b) What is the joint probability mass function of X and $\mathrm{Y}-\mathrm{X}$? Are X and $\mathrm{Y}-\mathrm{x}$ independent?
c) What is the correlation between X and Y ?

$$
(7+7+6 \text { Marks })
$$

Question 2

The continuous random variables X and Y satisfy $f(y \mid x)=\frac{1}{x}$ for $0<y<x$, and $f(y \mid x)=0$ otherwise. The marginal density function of X is given by $f_{X}(x)=2 x$ for $0<x<1$ and $f_{X}(x)=$ 0 otherwise.
a) What is the conditional density? $f(x \mid y)$?
b) What is $E(X \mid Y=y)$?

$$
(10+10 \text { Marks })
$$

Question 3

a) Let $X \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$, and $Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$. Furthermore X and Y are independent to each other. Derive the distribution of $2 \mathrm{X}-3 \mathrm{Y}-5$.
b) A company insures homes in three cities J, K, L. The losses occurring in these cities are independent. The moment generating functions for the loss distributions of the cities are

$$
M_{J}(t)=(1-2 t)^{-3}, \quad M_{K}(t)=(1-2 t)^{-2.5}, M_{L}(t)=(1-2 t)^{-4.5}
$$

Let X represent the combined losses from the three cities. Calculate $E\left(X^{3}\right)$.

$$
(10+10 \text { Marks })
$$

Question 4

a) An insurance policy pays a total medical benefit consisting of a part paid to the surgeon, X , and a part paid to the hospital, Y , so that the total benefit is $\mathrm{X}+\mathrm{Y}$. Suppose that $\operatorname{Var}(\mathrm{X})=\mathrm{E} 5$, $000, \operatorname{Var}(\mathrm{Y})=\mathrm{E} 10,000$, and $\operatorname{Var}(\mathrm{X}+\mathrm{Y})=\mathrm{E} 17,000$.

If X is the increased by a flat amount of E 100 , and Y is increased by 10%, what is the variance of the total benefit after these increases?
b) Given that $E(X)=5, E\left(X^{2}\right)=27.4, E(Y)=7, E(Y 2)=51.4$, and $\operatorname{Var}(X+Y)=8$, find $\operatorname{Cov}(X$ $+\mathrm{Y}, \mathrm{X}+1.2 \mathrm{Y}$).

$$
(10+10 \text { Marks })
$$

Question 5

a) A diagnostic test for the presence of disease has two possible outcomes: 1 for disease present and 0 for disease not present. Let X denote the disease state of a patient, and let Y denote the outcome of a diagnostic test. The joint probability function of X and Y is given by:

$$
P(X=x, Y=y)=\left\{\begin{array}{l}
0.800 \text { for }(x, y)=(0,0) \\
0.050 \text { for }(x, y)=(1,0) \\
0.025 \text { for }(x, y)=(0,1) \\
0.125 \text { for }(x, y)=(1,1)
\end{array}\right.
$$

Calculate $\operatorname{Var}(\mathrm{Y} \mid \mathrm{X}=1)$.
b) The stock prices of two companies at the end of any given year are modeles with random variables X and Y that follow a distribution with joint density function

$$
f(x, y)= \begin{cases}2 x & \text { for } 0<x<1, x<y<x+1 \\ 0 & \text { otherwise }\end{cases}
$$

What is the conditional variance of Y given that $\mathrm{X}=x$?

$$
\text { (8 + } 12 \text { Marks })
$$

