UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER 2017

TITLE OF PAPER	: MATHEMATICS FOR STATISTICIANS
COURSE CODE	$:$ STA213
TIME ALLOWED	$:$ TWO (2) HOURS
REQUIREMENTS	$:$ CALCULATOR
INSTRUCTIONS	$:$ THIS PAPER HAS FIVE (5) QUESTIONS. AN-
	SWER ANY THREE (3) QUESTIONS.

Question 1

(a) Calculate

$$
\int_{0}^{1} \frac{4 x+2}{1+x+x^{2}} \mathrm{~d} x
$$

leaving your answer in the form $a \log b$, where a and b are integers.
(b) The 3×3 matrices P and Q satisfy

$$
P Q=\left(\begin{array}{ccc}
k & 8 & 1 \\
1 & 1 & 0 \\
1 & 4 & 0
\end{array}\right), \quad \text { where } \mathbb{P}=\left(\begin{array}{ccc}
k & 6 & 8 \\
0 & 1 & 2 \\
-3 & 4 & 8
\end{array}\right)
$$

(i) Show that $\mathbb{P Q}$ is non-singular.
(ii) Find $(\mathbb{P Q})^{-1}$ in terms of k.
(iii) Find \mathbb{Q}^{-1}.
(c) Consider the vectors $\vec{v}=\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right)$ and $\vec{w}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and compute the following quantities (showing all workings):
(i) $\vec{v}+\vec{w}$
(ii) $|\vec{v}|$
(iii) $\langle\vec{v}, \vec{w}\rangle$
(iv) Are \vec{v} and \vec{w} perpendicular? (Explain your answer).

Question 2

(a) Given a system of linear equations over \mathbb{R}

$$
\begin{aligned}
x+2 y+3 z & =4 \\
2 x+3 y+4 z & =7 \\
3 x+4 y+5 z & =10
\end{aligned}
$$

(i) Write down the coefficient matrix A and the augmented matrix M .
(ii) Define the terms rank, consistent and inconsistent. Complete the following statements:
i. If $\operatorname{rank}(\mathbb{A})=\operatorname{rank}(\mathbb{M})$ then..
ii. If $\operatorname{rank}(\mathbb{A})<\operatorname{rank}(\mathbb{M})$ then ...
(iii) Find a matrix in row reduced echelon form which is equivalent to the augmented matrix \mathbb{M} and hence state $\operatorname{rank}(\mathbb{M})$ and $\operatorname{rank}(\mathbb{A})$.
(iv) Find all solutions of the system if any exist.
(b) Use partial fractions to show that

$$
\int_{1}^{3} \frac{(3 x+7)}{(x+1)(x+3)}=\log 6 .
$$

Question 3

[20 marks, $6+8+6$]
Let

$$
\mathbb{M}=\left(\begin{array}{ccc}
2 & 0 & 1 \\
-1 & 2 & 3 \\
1 & 0 & 2
\end{array}\right)
$$

be a matrix with entries in \mathbb{R}.
(a) What does it mean to say that v is an eigenvector of \mathbb{M} with eigenvalue λ ? State a condition for λ to be an eigenvalue of M in terms of the characteristic polynomial.
(b) Compute the characteristic polynomial of M and hence find the eigenvalues of M . (You should find that M has three distinct eigenvalues.)
(c) For each eigenvalue λ, compute the eigenspace E_{λ}.

Question 4

[20 marks, $4+4+4+8$]
(a) The matrices A and B are deined by

$$
\mathbb{A}=\left(\begin{array}{ll}
\lambda & 2 \\
4 & \lambda
\end{array}\right) \quad \text { and } \quad \mathbb{A}=\left(\begin{array}{ll}
\lambda & 2 \\
4 & \lambda
\end{array}\right)
$$

Show that there is a value of λ for which $\mathbb{A}+\mathbb{B}+\mathbb{A B}=\mu \mathbb{I}$, where μ is an integer and \mathbb{I} is the 2×2 identity matrix, and state the corresponding value of λ.
(b) Find $\int x^{2}\left(x^{2}+1\right) \mathrm{d} x$.
(c) Show that $\int_{0}^{9}(\sqrt{x}-2) d x=0$. How do you interpret this in terms of areas?
(d) Let

$$
A=\left(\begin{array}{llll}
5 & 1 & 3 & 8 \\
3 & 2 & 2 & 5 \\
1 & 0 & 1 & 2
\end{array}\right) \quad \text { and } \quad \vec{d}=\left(\begin{array}{l}
3 \\
3 \\
1
\end{array}\right)
$$

Find the general solution of $\mathrm{A} \vec{x}=\vec{d}$. (Put the augmented matrix into reduced row echelon form.) Express your solution in vector form.

Question 5

[20 marks, $4+5+6+5$]
(a) Find the derivatives $\frac{d y}{d x}$ of the following functions
(i) $x^{3}+y^{3}+3 x y=3$,
(ii) $y=x^{\frac{1}{x}}$
(b) Use Newton's method with five (5) iterations and five decimal places to find the root of

$$
f(x)=x^{3}-x+1
$$

given that $x_{0}=-1$.
(c) Evaluate the following integral, $\int_{0}^{2} \int_{-1}^{1}\left(1-6 x^{2} y\right) d x d y$.

