UNIVERSITY OF SWAZILAND

RE-SIT EXAMINATION PAPER $2017 / 2018$

TITLE OF PAPER : MATHEMATICS FOR STATISTICIANS
COURSE CODE : STA213
TIME ALLOWED : TWO (2) HOURS
REQUIREMENTS : CALCULATOR
INSTRUCTIONS : THIS PAPER HAS FIVE (5). ANSWER ANY THREE (3) QUESTIONS.

Question 1

(a) Suppose that a is a positive number and that the function f is given by

$$
f(x, y)=x^{4}-2 a^{2} x^{2}-y^{2}+1
$$

Find the critical points of f. For each critical point of f, determine whether it is a local minimum, local maximum, or a saddle point.
(b) Let V be a vector space over a field F, and suppose that $\vec{r}_{1}, \ldots, \vec{v}_{n}$ are vectors in V.
(i) What does it mean to say that $\vec{v}_{1} \ldots . \vec{v}_{n}$ are linearly independent?
(ii) What does it mean to say that $\left\{\vec{e}_{1}, \cdots, \vec{v}_{n}\right\}$ spans the vector space V ?
(iii) When is a set of vectors in V a basis?
(iv) Let $V=\mathbb{R}^{3}$. Prove that the set

$$
\mathfrak{D}=\left\{\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right):\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right):\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)\right\}
$$

is a basis for 1

Question 2

[20 marks, $8+8+4$]
(a) The number of fish in a lake is 10000 at the start of 2016 . Each year, 5% of the fish who were alive at the start of the year die and 1000 new fish are born. Find an expression, in as simple a form as possible, for the number of fish in the lake N years after the start of 2016. Describe what happens to the number of fish in the lake in the long run.
(b) Find all eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)
$$

(c) Find a 2×2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with non-zero entries in \mathbb{R} such that the equation

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{2}{2}
$$

has no solutions,

Question 3

[20 marks, $4+6+4+2+4$]
(a) Let the following matrix and vector,

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad \vec{b}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

(i) Determine the matrix $\mathrm{B}=\mathrm{A}^{2} \mathrm{~A}$ as well as its inverse and state the formula for the projection matrix that projects \vec{b} onto the column space of A.
(ii) Determine the projection vector $\vec{p}=A\left(A^{T} A\right)^{-1} A^{T} \vec{b}$ for projecting \vec{b} onto the column space of A as well as the vector \bar{E}_{\perp} that is orthogonal to the column space of A such that $\vec{b}=\vec{p}+\vec{e}_{\perp}$.
(b) Find a value of $a \in \mathbb{C}$ for which the vectors

$$
\vec{u}_{1}=\left(\begin{array}{l}
1 \\
0 \\
i \\
2
\end{array}\right) \quad \text { and } \quad \vec{u}_{2}=\left(\begin{array}{c}
01 \\
3 \\
\alpha \\
1-i
\end{array}\right)
$$

are orthogonal in the standard inner product on $\mathbb{C}^{\text {t }}$.
(c) Consider the 4×2 matrix

$$
A=\left(\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right) .
$$

Verify that A has rank 2
(d) Use Newton's method with five (5) terations and five decimal places to find the root of

$$
f(x)=x^{3}-x+1
$$

given that $x_{0}=-1$.

Question 4

(a) Consider the following system of linear equations:

$$
\begin{array}{r}
x+0 y+z=1 \\
x+y+z=2 \\
0 x+y+z=3
\end{array}
$$

(i) Compute the coefficient matrix. Call that matrix A.
(ii) Compute the augmented matrix for the given system of linear equations.
(iii) Is the matrix A in row echelon form? (Justify your answer)
(ii) Use Gauss-Jordan elimination for solving a system of linear equations to solve the given system of linear equation
(b) Suppose the quantity y is defined as a function of x through the equation

$$
x^{2} y^{3}-6 x^{3} y^{2} \div 2 x y=1
$$

Find the value of y when $x=1 / 2$. [You might find it useful to note that $y^{3} 3 y^{2}+4 y^{4}=(y 2)\left(y^{2} y+2\right)$.] Find a general expression for the derivative $y^{\prime}(x)=\frac{d y}{d x}$. Hence determine the value of $y^{\prime}(1 / 2)$.

Question 5

[20 marks, $6+6+4+4$]
(a) A monopoly has fixed costs of 20 and marginal cost function $3 q^{2}+4$. The demand equation for its product is $p+q=20$. Determine the profit function in terms of q. Hence find the production level that maximises the profit.
(b) Use the method of Lagrange multipliers to find the positive values of x and y which maximise

$$
\frac{2 y}{y+2} \div \frac{x}{x+1}
$$

subject to the constraint $x \div y=120$.
(c) The matrix C is defined by

$$
\mathrm{C}=\left(\begin{array}{ccc}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right) .
$$

Factorize dot (C) as the product of three linear factors.
(d) The matrix A is defined by $A=\left(\begin{array}{cc}-2 & c \\ d & 3\end{array}\right)$, where c and d are constants. Given that the image of the point (5.2) under the transformation epreserited by matrix A is (-2.1), find the values of c and d.

