UNIVERSITY OF SWAZILAND

MAIN EXAMINATION PAPER 2018

TITLE OF PAPER	$:$ STATISTICAL INFERENCE II
COURSE CODE	$:$ STA 302/ST 303
TIME ALLOWED	$: 2$ HRS
REQUIREMENTS	$:$ CALCULATOR
INSTRUCTIONS	$:$ ANSWER ANY THREE QUESTIONS

INSTRUCTIONS : ANSWER ANY THREE QUESTIONS

Question 1

Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots ., \mathrm{X}_{\mathrm{n}}$ be a random sample from a population density function $f(x \mid \theta)$, where θ is a parameter. Let $T(\mathbf{X})=T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a sufficient statistic.
a) What can be said about the conditional-distribution of $X_{1}, X_{2}, \ldots, X_{n}$ given $T(X)=$ $\mathrm{T}(x)$.
b) State the factorization theorem for sufficient statistics.
c) Suppose now that

$$
f(x \mid \theta)=\frac{x^{\theta-1} e^{-x}}{(\theta-1)!} x>0 \text {, and } \theta>0 .
$$

Show that $T(\mathbf{X})=\sum_{i=1}^{n} \ln X_{i}$ is a sufficient statistic for θ.

Question 2

Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$ be a random sample from a distribution with probability density function given by

$$
f(x ; \theta)=\frac{1}{2 \theta} e^{-\frac{|x|}{\theta}},-\infty<x<\infty, \theta>0 .
$$

a) Find the UMVUE of θ.
b) Show that the UMVUE of θ achieves the Crame'r-Rao lower bound.

$$
\text { (10 + } 10 \text { Marks })
$$

Question 3

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a i.i.d. sample from Uniform $[0, \theta], \theta>0$.
a) Find the MLE of θ^{2}.
b) Show that the MLE obtained in a) is biased for θ^{2}.
c) Show that for any fixed $\theta>0$, the bias goes to 0 as $n \rightarrow \infty$.

$$
\text { (} 5+10+5 \text { Marks })
$$

Question 4

a) Suppose X is a single observation from a population with probability density function given by:

$$
f(x \mid \theta)=\theta x^{\theta-1}, 0<x<1 .
$$

where $\theta>0$ is the parameter of interest. Find the rejection region for the most powerful test of level 0.05 , for testing the simple hypothesis $\mathrm{H}_{0}: \theta=3$ against the simple alternative hypothesis $\mathrm{H}_{0}: \theta=2$.
b) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$ be a random sample from a Uniform $[0, \theta]$ distribution, where $\theta>0$ is the population parameter. Find the uniformly most powerful rejection region of size α for testing the hypothesis $\mathrm{H}_{0}: \theta=2$ against $\mathrm{H}_{1}: \theta \leq 2$.

$$
(10+10 \text { Marks })
$$

Question 5

a) Suppose the interest is in the true mortality risk θ in a hospital H which is about to try a new operation. On average in the country around 10% of people die, but mortality rates differ in different hospitals vary from 3% to around 20%. Hospital H has no deaths in their first 10 operations. What should be the belief about θ ?
b) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are iid Poisson(λ) random variables, and that λ has an exponential distribution with mean 1 , so that $\pi(\lambda)=\mathrm{e}^{-\lambda}, \lambda>0$. Find $\hat{\theta}$ under quadratic loss and absolute error loss.

$$
\text { (10 + } 10 \text { Marks) }
$$

