UNIVERSITY OF SWAZILAND

RE-SIT AND SUPPLEMENTARY EXAMINATION PAPER 2018

TITLE OF PAPER	$:$ STATISTICAL INFERENCE II
COURSE CODE	$:$ STA302/ST303
TIME ALLOWED	$: 2$ HRS
REQUIREMENTS	$:$ CALCULATOR
INSTRUCTIONS	$:$ ANSWER ANY THREE QUESTIONS

Question 1

Suppose $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ are i.i.d. random variables with probability density function

$$
f(x \mid \sigma)=\frac{1}{2 \sigma} \exp \left(-\frac{|x|}{\sigma}\right), \quad \sigma>0,-\infty<x<\infty
$$

Use the method of moments and maximum likelihood estimation to find the estimator of σ.

$$
\text { (8 + } 12 \text { Marks) }
$$

Question 2

Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. random variables on the interval $[0,1]$ with a density function

$$
f(x \mid \alpha)=\frac{\Gamma(2 \alpha)}{\Gamma(\alpha)^{2}}[x(1-\alpha)]^{\alpha-1}
$$

where $\alpha>0$ is the parameter to be estimated from the sample. Find the sufficient statistic for α by verifying that this distribution belongs to the exponential family.
(20 Marks)

Question 3

$X_{1}, X_{2}, \ldots, X_{n} \sim N\left(\theta_{1}, \theta_{2}\right)$, where $\theta_{2}>0$ is the variance.
a) Argue that $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ is the MVUE of θ_{2}.
(10 Marks)
b) Show that the MVUE is not efficient, i.e. the variance of S^{2} is greater than the CramerRao lower bound.
(10 Marks)

Question 4

a) Let $X_{(n)}$ be the largest value in a sample of size n drawn from the uniform distribution on $[0, \theta]$. Show that $X_{(n)} / \theta$ is a pivot. Using the pivot, find a $100(1-\alpha) \%$ confidence interval for θ. Discuss how you would test the hypothesis that θ takes a specific value $\theta 0$ for such a sample.
(10 Marks)
b) Suppose you have a sample of size n from an exponential distribution with mean μ. Find the best size- α test of $H_{0}: \mu=\mu_{0}$ against the alternative $H_{1}: \mu=\mu_{1}$, where $\mu_{1}>\mu_{0}$.
(10 Marks)

Question 5

Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a Poisson distribution with unknown mean θ. Two models for the prior distribution of θ are contemplated;

$$
\pi_{1}(\theta)=e^{-\theta}, \theta>0, \text { and } \pi_{2}(\theta)=\theta e^{-\theta}, \theta>0
$$

a) Calculate the Bayes estimator of θ under both models, with quadratic loss function.
b) The prior probabilities of model 1 and model 2 are assessed at probability $1 / 2$ each.

Calculate the Bayes factor for H_{0} : model 1 applies against H_{1} :model 2 applies.
(10 Marks)

