UNIVERSITY OF SWAZILAND

FINAL EXAMINATION PAPER 2017

TITLE OF PAPER: SAMPLE SURVEY THEORY
COURSE CODE: STA305/ST306
TIME ALLOCATED: TWO (2) HOURS
REQUIREMENTS: STATISTICAL TABLES AND CALCULATOR
INSTRUCTION: ANSWER ANY THREE (3) QUESTIONS. THE QUESTIONS CARRY
THE MARKS AS INDICATED WITHIN THE PARENTHESIS

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1

(a) Consider a population of farms on a 25×25 grid of varying sizes and shapes. If we randomly select a single square on this grid, then letting $x_{i}=$ the area of farm i and $\mathrm{A}=625$ total units, the probability that farm i is selected is: $\mathrm{p}_{i}=\frac{x_{i}}{A}=\frac{x_{i}}{625}$.

$y_{i}=$ Workers	$p_{i}=x_{i} / A=$ Size of Farm/Total Area
2	$5 / 625$
8	$28 / 625$
4	$12 / 625$
8	$14 / 625$
3	$13 / 625$

The table above shows a replacement sample of 5 farms selected with probability-proportional-to-size (PPS). Compute:
(i) The estimated number of workers (and associated standard errors).
(ii) The estimated number of farms.
(b) The following coefficients of variation per unit were obtained in a farm survey in lowa, the unit being an area 1 mile square (data of R.J.Jessen):

Item	Estimated cv (\%)
Acres in farms	38
Acres in corn	39
Acres in oats	44
Number of family workers	100
Number of hired workers	
Number of unemployed	\ddots

A survey is planned to estimate acreage items with a cv of 2.5% and numbers of workers (excluding unemployed) with a cv of 5%. With simple random sampling, how many units are needed? How well would this sample be expected to estimate the number of unemployed?

Question 2

A manufacturer of band saws to estimate the average repair cost per month for the saws he has sold to certain industries. He cannot obtain a repair cost for each saw, but he can obtain the total amount spent for saw repairs and the total number of
saws owned by each industry. Thus he decides to use cluster sampling, with each industry as a cluster. The manufacturer selects a simple random sample of size $n=20$ from the $N=82$ industries he services. The data on total cost of repairs per industry and the number of saws per industry are as given in the accompanying table.

Industry	Number of Saws	Total Repair Cost for Past Month(SZL)
1	3	
2	7	50
3	11	110
4	9	230
5	2	140
6	12	50
7	14	260
8	3	240
9	5	45
10	9	60
11	8	230
12	6	140
13	3	120
14	2	70
15	1	50
16	4	10
17	12	60
18	6	280
19	8	150
20		110
		120

(a). Estimate the average repair cost per saw for the past month, and give the standard error of this estimate.
(b) Estimate the total amount spent by the 82 industries on band saw repairs and give the standard error of this estimate.
(c) After checking his sales records, the manufacturer finds that he sold a total of 690 band saws to these industries. Using this additional information, estimate the total amount spent on saw repairs by these industries, and give the standard error.
(d) The manufacturer wants to estimate the average repair cost per saw for next month. How many clusters should he select for his sample if he wants to estimate this average cost to within SZL 2.00 with 95% confidence?

Question 3.

(a) A village contains 175 children. Dr. Jones conducts a SRS of 17 of them and counts the cavities in each one's mouth, finding the frequency table:

3

Number of Cavities	0	1	2	3	4	5
Number of Children	5	4	2	3	2	1

Dr. Smith examines all 175 children's mouths and records that 55 have no cavities. Estimate the total number of cavities in the village's children using
(i) Only Dr. Jone's data,
(ii) both Dr. Jones' and Dr. Smith's data.
(iii) Give approximately unbiased estimate for the variance of the estimator I (ii). (5)
(b) A simple random sample of 290 households was chosen from a city area containing 14828 households. Each family was asked whether it owned or rented the house and also whether it had the exclusive use of an indoor toilet. Results were as follows.

	Exclusive use of toilet		
	Yes	No	Total
Owned	141	6	147
Rented	109	34	143
Total	250	40	290

(i) For families who rent, estimate the percentage in the area with exclusive use of an indoor toilet and give the standard error of your estimate;
(ii) Estimate the total number of renting families in the area who do not have exclusive indoor toilet facilities and give the standard error of this estimate.
(c) A stratified random sample is better for estimating the population mean (in the sense of having a smaller variance) than a simple random sample of the same size, when the variability between strata is high compared to the variability within strata. What do you think will be the case for cluster sampling in terms of the variability between clusters as compared to the variability within clusters? Why?

Question 4

(a) Suppose we want to estimate the average number of hours of TV watched in the previous week for all adults in some county. Suppose also that the populace of this county can be grouped naturally into 3 strata (town A, town B, rural) as summarized in the table

Statistic	Town A	Town B	Rural
N_{h}	155	62	93
n_{h}	20	8	12
\bar{y}_{h}	33.90	25.12	19.00
s_{h}	5.95	15.24	9.36
\hat{r}_{h}	5254.5	1557.4	1767.0
c_{h}	2	2	3

(i) Compute a 95\% confidence interval for the total number of hours of TV watched in the previous week for all adults in this county.
(ii) Estimate the total sample size needed to estimate the mean hours of TV watched in this particular county to within 1 hour with 99% probability using optimal allocation (unequal and equal costs).
(8)

$$
C^{*}=\frac{\left[\sum_{h=1}^{L} N_{h} \sigma_{h} V C_{h}\right]^{2}}{\frac{N^{2} d^{2}}{z^{2}}+\sum_{h=1}^{L} N_{h} \sigma_{h}}
$$

(b) A survey is planned to study family income in a mixed urban and rural population. Discuss any practical difficulties that might arise in defining "income", in defining "family", and in combining information from rural and urban areas.

Question 5

(a) The formula for the variance of the estimator of a population mean based on a stratified (random) sample is

$$
V=\sum_{h=1}^{L} W_{h}^{2} \frac{s_{h}^{2}}{n_{h}}\left(1-\frac{n_{h}}{N_{h}}\right) .
$$

Define the terms N_{h}, S_{h}, n_{h} and W_{h} in the above formula. Explain the conditions under which stratified sampling may be superior to simple random sampling. (4)
(b) The Chief Education Officer for a region wishes to estimate the total number of children who have played truant in the past week (that is, who have been absent from lessons with without good reason). The region is divided into four education authorities (strata) and a random sample of ten schools is taken from each education authority. The results are as follows.

Education authority h	Total number of schools	Number of children who have played truant (y) in schools selected	Sample mean	Sample standard deviation
1	141	$4,8,10,0,1,4,0,12,1,0$	4.0	4.50
2	471	$5,15,6,9,8,15,17,10,6,16$	10.7	4.62
3	256	$23,26,11,23,14,17,33,0,6,22$	17.5	9.92
4	1499	$2,3,3,3,4,0,3,1,2,3$	2.4	1.17

(i) Estimate the total number of children who have played truant in the past week and obtain an approximate 95% confidence interval for this total.
(ii). The Officer wishes to report estimates of the total number of children who have played truant in the past week for each of the four education authorities, as supporting information. Obtain a point estimate and an approximate 95\% confidence interval for this total number for education authority 1.
(iii) The Officer is planning a new survey, and is intending to sample an equal number of schools from each authority in the region. Giving reasons, suggest another allocation method that might be preferred to computer the sample sizes in each authority. Use this method to compute the stratum sample sizes for a sample of 40 schools.

Useful formulas

$$
\begin{aligned}
& s^{2}=\frac{\sum_{f=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n-1} \\
& \hat{\mu}_{\text {ars }}=\bar{y} \\
& \hat{\tau}_{\text {ere }}=N \hat{\mu}_{\text {str }} \\
& \hat{p}_{s r s}=\sum_{i=1}^{n} \frac{y_{i}}{n} \\
& \hat{\tau}_{h h}=\frac{1}{n} \sum_{i=1}^{n} \frac{y_{i}}{p_{i}} \\
& \hat{\mu}_{h h}=\frac{\dot{r}_{h_{h}}}{N} \\
& \hat{\tau}_{h t}=\sum_{i=1}^{\nu} \frac{y_{i}}{\pi_{i}} \\
& \hat{\mu}_{h t}=\frac{\hat{\tau}_{h t}}{N} \\
& \hat{r}=\frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} x_{i}} \\
& \dot{\mu}_{T}=r \mu_{x} \\
& \hat{\tau}_{r}=N \tau \mu_{x}=r \tau_{x} \\
& \hat{\mu}_{L}=a+b \mu_{x} \\
& \hat{\tau}_{L}=N \mu_{L} \\
& \hat{\mu}_{\text {stit }}=\sum_{h=1}^{L} \frac{N_{h}}{N} \bar{\nu}_{h} \\
& f_{\text {tat }}=N \tilde{\mu}_{\text {dit }} \\
& \hat{p}_{s t r}=\sum_{h=1}^{L} \frac{N_{h}}{N} \hat{p}_{h} \\
& \hat{\mu}_{\text {patr }}=\sum_{h=1}^{L} w_{h} \bar{y}_{h} \\
& \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n} y_{i}^{2}-\frac{\sum_{i=1}^{n} y_{i}}{n} \\
& \dot{V}\left(\hat{\mu}_{\text {trs }}\right)=\left(\frac{N-n}{N}\right) \frac{s^{2}}{n} \\
& \hat{\mathrm{~V}}\left(\hat{\tau}_{\mathrm{srs}}\right)=N^{2} \hat{\mathrm{~V}}\left(\hat{\mu}_{s r s}\right) \\
& \left(\frac{N-n}{N}\right) \frac{\hat{p}(1-\hat{p})}{n-1}\left(\frac{N-n}{N}\right) \\
& \hat{V}\left(\hat{\mu}_{h n}\right)=\frac{1}{n(n-1)} \sum_{i=1}^{n}\left(\frac{y_{i}}{p_{i}}-\hat{p}_{h h}\right)^{2} \\
& \hat{\mathrm{~V}}\left(\hat{\mu}_{h h}\right)=\frac{1}{N^{2}} \hat{\mathrm{~V}}\left(\hat{\tau}_{h_{h}}\right) \\
& \hat{V}\left(\tilde{\tau}_{s t}\right)=\sum_{i=1}^{\nu}\left(\frac{1}{\pi_{i}^{2}}-\frac{1}{\pi_{i}}\right) v_{i}^{2}+ \\
& 2 \sum_{i=1}^{\nu} \sum_{j>i}^{\nu}\left(\frac{1}{\pi_{i} \pi_{j}}-\frac{1}{\pi_{i j}}\right) y_{i} y_{j} \\
& \hat{V}\left(\hat{\mu}_{\Lambda i}\right)=\frac{1}{N^{2}} \hat{V}\left(\hat{\tau}_{T_{t}}\right) \\
& \hat{V}(\hat{r})=\left(\frac{N-n}{N n \mu_{x}^{2}}\right) \frac{\sum_{i=1}^{n}\left(y_{i}-r x_{i}\right)^{2}}{n-1} \\
& \hat{V}\left(\hat{\mu}_{\tau}\right)=\left(\frac{N-n}{N n}\right) \frac{\sum_{i=1}^{n}\left(z_{i}-\tau x_{i}\right)^{2}}{n-1} \\
& \hat{V}\left(\hat{\tau}_{r}\right)=\frac{N(N-n)}{n} \frac{\sum_{i=1}^{n}\left(y_{i}-r x_{i}\right)^{2}}{n-1} \\
& \grave{V}\left(\mu_{L}\right)=\frac{N-n}{N n(n-1)} \sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2} \\
& \hat{V}\left(\hat{\tau}_{L}\right)=\frac{N(N-n)}{n(n-1)} \sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2} \\
& \hat{V}\left(\hat{\mu}_{\mathrm{str}}\right)=\frac{1}{N^{2}} \sum_{h=1}^{L} N_{h}^{2}\left(\frac{N_{h}-n_{h}}{N_{h}}\right) \frac{s_{h}^{2}}{n_{h}} \\
& \hat{V}\left(\hat{f}_{t a r}\right)=N^{2} \hat{V}\left(\hat{\mu}_{s t r}\right) \\
& \hat{\mathrm{V}}\left(\hat{p}_{s t r}\right)=\frac{1}{N^{2}} \sum_{h=1}^{L} N_{h}^{2}\left(\frac{N_{h}-n_{h}}{N_{h}}\right)\left(\frac{\hat{p}_{h}\left(1-\hat{p}_{h}\right)}{n_{h}-1}\right) \\
& \hat{\mathrm{V}}\left(\hat{\mu}_{\text {patr }}\right)=\frac{1}{n}\left(\frac{N-n}{N}\right) \sum_{h=1}^{L} w_{h} s_{h}^{2}+\frac{1}{n^{2}} \sum_{h=1}^{L}\left(1-w_{h}\right) s_{h}^{2}
\end{aligned}
$$

$$
\begin{array}{r}
\hat{\tau}_{d}=\frac{M}{n L} \sum_{i=1}^{n} \sum_{j=1}^{L} y_{i j}=\frac{N}{n} \sum_{i=1}^{n} \sum_{j=1}^{L} y_{k j}=\frac{N}{n} \sum_{i=1}^{n} y_{i}=N \bar{y} \\
\hat{\mu}_{d l}=\frac{1}{n L} \sum_{i=1}^{n} \sum_{j=1}^{L} y_{i j}=\frac{1}{n L} \sum_{i=1}^{n^{\prime}} y_{i}=\frac{\tilde{y}}{L}=\frac{\hat{\tau}_{c l}}{M}
\end{array}
$$

where $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=\frac{t_{c l}}{N}$

$$
\hat{V}\left(\hat{\tau}_{c l}\right)=N(N-n) \frac{s_{u}^{2}}{n} \quad \hat{V}\left(\hat{\mu}_{c}\right)=\frac{N(N-n)}{M^{2}} \frac{s_{u}^{2}}{n}
$$

where $s_{u}^{2}=\frac{\sum_{n=1}^{n-1}(u)^{2}}{n-1}$.

$$
\hat{\mu}_{1}=\bar{y}=\frac{\hat{\tau}_{d}}{N} \quad \hat{V}\left(\hat{\mu}_{1}=\frac{N-n s_{u}^{2}}{N} \frac{1}{n}\right.
$$

The formulas for systematic sampling are the same as those used for one-stage cluster sampling. Change the subscript d to sys to denote the fact that data were collected under systematic sampling.

$$
\begin{array}{rr}
\hat{\mu}_{c(a)}=\frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} M_{i}}=\frac{\sum_{i=1}^{n} y_{i}}{m} & \hat{V}\left(\hat{\mu}_{c}(a)\right)=\frac{(N-n) N}{n(n-1) M^{2}} \sum_{i=1}^{n} M_{i}^{2}\left(\bar{y}-\hat{\mu}_{c(a)}\right)^{2} \\
\hat{\mu}_{c(b)}=\frac{N}{M} \frac{\sum_{i=1}^{n} y_{i}}{n}=\frac{N}{n M} \sum_{i=1}^{n} y_{i} & \hat{V}\left(\hat{\mu}_{c(b)}\right)=\frac{(N-n) N}{n(n-1) M^{2}} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\frac{(N-n) N}{n M^{2}} s_{u}^{2} \\
\hat{p}_{c}=\frac{\sum_{i=1}^{n} p_{i}}{n} & \hat{V}\left(\hat{p}_{c}\right)=\left(\frac{N-N n}{n N}\right) \sum_{i=1}^{n} \frac{\left(p_{i}-\hat{p}_{c}\right)^{2}}{n-1}=\left(\frac{1-f}{n}\right) \sum_{i=1}^{n} \frac{\left(p_{i}-\hat{p}_{c}\right)^{2}}{n-1} \\
\hat{p}_{c}=\frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} M_{i}} & \hat{V}\left(\hat{p}_{c}\right)=\left(\frac{1-f}{n \bar{m}^{2}}\right) \frac{\sum_{i=1}^{n}\left(y_{i}-\hat{p}_{c} M_{i}\right)^{2}}{n-1}
\end{array}
$$

To estimate τ, multiply $\hat{\mu}_{\mathrm{c} \cdot(}$ by M. To get the estimated variances, multiply $\hat{V}\left(\hat{\mu}_{c(\cdot)}\right)$ by M^{2}. If M is not known, substitute M with $N m / n . \bar{m}=\sum_{i=1}^{n} M_{i} / n$.

$$
\begin{array}{ll}
n \text { for } \mu \text { SRS } & n=\frac{N \sigma^{2}}{(N-1)\left(d^{2} / z^{2}\right)+\sigma^{2}} \\
n \text { for } \tau \text { SRS } & n=\frac{N \sigma^{2}}{(N-1)\left(d^{2} / z^{2} N^{2}\right)+\sigma^{2}} \\
n \text { for } p \text { SRS } & n=\frac{N p(1-p)}{(N-1)\left(d^{2} / z^{2}\right)+p(1-p)} \\
n \text { for } \mu \text { SYS } & n=\frac{N \sigma^{2}}{(N-1)\left(d^{2} / z^{2}\right)+\sigma^{2}} \\
n \text { for } \tau \text { SYS } & n=\frac{N \sigma^{2}}{(N-1)\left(d^{2} / z^{2} N^{2}\right)+\sigma^{2}} \\
n \text { for } \mu \text { STR } & n=\frac{\sum_{h=1}^{L} N_{h}^{2}\left(\sigma_{h}^{2} / w_{h}\right)}{N^{2}\left(d^{2} / z^{2}\right)+\sum_{h=1}^{L} N_{h} \sigma_{h}^{2}} \\
n \text { for } \tau \text { STR } & n=\frac{\sum_{h=1}^{L} N_{h}^{2}\left(\sigma_{h}^{2} / w_{h}\right)}{N^{2}\left(d^{2} / z^{2} N^{2}\right)+\sum_{h=1}^{L} N_{h} \sigma_{h}^{2}}
\end{array}
$$

where $w_{h}=\frac{n_{h}}{n}$.
Allocations for STR μ :

$$
\begin{aligned}
n_{h}=\left(c-c_{0}\right)\left(\frac{N_{h} \sigma_{h} / \sqrt{c_{h}}}{\sum_{k=1}^{L} N_{k} \sigma_{k} \sqrt{c_{k}}}\right) & \left(c-c_{0}\right)=\frac{\left(\sum_{k=1}^{L} N_{k} \sigma_{k} / \sqrt{c_{k}}\right)^{3}\left(\sum_{k=1}^{L} N_{k} \sigma_{k} \sqrt{c_{k}}\right)}{N^{2}\left(d^{2} / z^{2}\right)+\sum_{k=1}^{L} N_{k} \sigma_{k}^{2}} \\
n_{h}=n\left(\frac{N_{h}}{N}\right) & n=\frac{\sum_{k=1}^{L} N_{k} \sigma_{k}}{N^{2}\left(d^{2} / z^{2}\right)+\frac{1}{N} \sum_{k=1}^{L} N_{k} \sigma_{k}^{2}} \\
n_{h}=n\left(\frac{N_{h} \sigma_{h}}{\sum_{k=1}^{L} N_{k} \sigma_{k}}\right) & n=\frac{\left(\sum_{k=1}^{L} N_{k} \sigma_{k}\right)^{2}}{N^{2}\left(d^{2} / z^{2}\right)+\sum_{k=1}^{L} N_{k} \sigma_{k}^{2}}
\end{aligned}
$$

Allocations for STR τ :

$$
\text { change } N^{2}\left(d^{2} / z^{2}\right) \text { to } N^{2}\left(d^{7} / z^{2} N^{2}\right)
$$

Allocations for STR p:

$$
n_{h}=n\left(\frac{N_{i} \sqrt{p_{h}\left(1-p_{h}\right) / c_{h}}}{\sum_{k=1}^{L} N_{k} \sqrt{p_{k}\left(1-p_{k}\right) / c_{k}}}\right) \quad n=\frac{\sum_{k=1}^{L} N_{k} p_{k}\left(1-p_{k}\right) / w_{k}}{N^{2}\left(d^{2} / z^{2}\right)+\sum_{k=1}^{L} N_{k} p_{k}\left(1-p_{k}\right)}
$$

Table A. 1
Gumulative Stancardizer Nomal Distribution
$A(z)$ is the integral of the standardized normal distribution from $-\infty$ to x (fin other words, the area under the curve to the left of z). It gives the probability of a normal random variable not. being more than x standard deviations above its mean. Values of x of particular importance:

\%	$d(t)$	
1.645	0.9300	Lower fimit of figt 5%
1960	0.9750	Lower limit of tight 25% mill
2326	0.9900	Lowe limut oftight 1\% will
2.576	0.9950	Lower limit of right 0.5% tril
3.050	0.9990	Lower limit of righe 0.1\% tail
3791	0.9995	

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.3478	0.5317	0.3557	0.5596	0.53\%	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.3548	0.5987	0.6026	0.606*	0.6103	0.6141
03	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.643	0.6480	0.6517
0.4	0.654	0.6591	0.6628	0.664	0.6700	0.6736	0.672	0.6878	0.6844	0.6879
0.5	0.6915	0.6850	0.6085	0.7019	0.7054	0,7085	0.7123	0.7157	0.7150	0.7234
0.6	0.7757	0.7291	0.733	0.7357	6.7389	0.7422	0.7454	0.7486	9.7517	0.7519
0.7	0.7580	0.7611	0.7642	0.7673	07704	0.7734	0.7764	0.7794	0.782	0.785
0.8	0.7881	0.7910	0.793	0.797	0.7995	0.8023	0.8051	0.8076	0.8106	0.8133
0.5	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8865	0.8389
1.0	0.8413	08438	0.8461	0.8485	0.850\%	0.8511	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	a0.0.5	0.8886	0.8708	0.8729	0.3749	0.8780	0.8790	0.8810	0.8830
12	0.8549	A.8869	0.8888	0.6007	童放925	0.824	0.8962	0.8580	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.917
14	0.9192	29\%97	0.9222	0.9236	0.9251	0.9265	0.9779	0.9292	0.9306	0.9319
15	0.9332	0.0843	0.9357	0.9370	0.9387	0.9394	0.9406	0.418	09429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9354	0.9564	6.5575	0.9582	0.9591	0.9599	0.9808	0.9616	0.9525	0.96 .33
1.8	0.9641	0.9649	0.265	0.9854	0.9671	0.9678	0.9686	09693	0.5699	0.9706
1.9	0.9713	09719	0.9725	0.773	0.9738	0.974	0.9750	09756	0.9761	0.9767
20	0.9772	0.9778	0.978	0.9788	09793	0.9793	0.5803	0.980%	0.9812	0.9817
21	0.8821	0.9880	0.9830	0.8834	09838	0.9842	0.9846	0.9850	0.983	0.9857
22	0.5861	0.985	0.9858	0.9871	0.8875	0.9878	0.9881	0.9884	0.9887	0.9890
23	0989	0.58\%	0.9898	0.9901	0.9904	0.9906	0.9009	0.931	00973	0.9916
24	0.9918	09920	0.9922	0.9085	0.9927	0.9929	0.0931	0.9932	0.9934	0.9930
25	0.9938	0.9940	0.994	0.9943	09945	0.5946	0.948	0.9949	0.9951	0.995
26	0.9963	0.9955	0.5956	0.9957	09939	0.9950	09\%51	0.9962	0.9963	0.9994
27	0.9865	0.9965	0.3967	0.9968	09969	0.9970	0.9971	0.5972	0.9973	0.9974
28	0.9974	0.9975	0.9976	0.9977	0.9977	0.9078	0.9979	0.9979	0.9980	0.9981
29	0.9981	0.9982	0.9982	0.9983	0.9984	0.98084	0.9985	0.9985	0.9986	0.9986
3.0	0.9887	0.9987	6.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9971	0.9\%)1	0.9592	0.9992	0.9592	0.9992	0.9793	0.9995
32	0.9993	09993	0.9994	0.9954	0.9994	0.9994	0.9984	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9966	0.9996	0.9996	0.9996	0.5996	0.9996	0.5997
3.4	0.8997	0.9997	0.9997	0.93\%7	0.9997	0.9997	0.9997	0.9997	0.9897	0.9988
3.5	0.9998	0.9998	0.9998	0.99988	0.9998	0.9998	0.9998	0.9998	0.9998	0.99\%8
3.6	0.9998	0.99\%8	0.99\%9							

Tabsen 2
tOlistribution: Cint c Valuas of t

		Signiflemice isvel					
Dugrees of fruedon	no-tortied tase Onv-华led tast:	$\begin{aligned} & 10 \% \\ & 2 \% \end{aligned}$	$\begin{aligned} & 5 \% \\ & 7.5 \% \end{aligned}$	$\begin{aligned} & 2 \% \\ & 1 \% \end{aligned}$	$\begin{aligned} & 1 \% \\ & 0.5 \% \end{aligned}$	$\begin{aligned} & 0.2 \% \\ & 0.1 \% \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & 0.05 \% \end{aligned}$
1		6314	12.706	31.821	03.657	318.309	636.619
2		2.920	4.303	6, 86	9.923	22.327	31,599
3		2353	3.188	4.541	4.841	10.215	12.924
4		2132	2776	3,747	4.604	7.173	8.610
5		2015	2.371	3165	4.032	5.893	6.869
6		1.943	2.47	3.143	3.707	5.208	5.959
1		1,894	2365	2595	3.49\%	4.785	5,408
8		1860	2306	2.8\%	3,355	4.501	5.041
9		1.833	2.262	2.821	3.250	4.297	4.781
10		1,812	2225	2.764	3.169	4.144	4.587
11		1.796	2201	2718	3.106	4.025	4,437
12		1.76	2179	2.681	3.055	3930	4.318
13		1.771	2.160	2050	3.072	3.852	4.721
14		1.761	2.145	2.624	2,977	3.787	4.140
13		1.753	2.131	2.602	2.947	3.73	4,073
16		1.746	2.120	2.583	2.921	3.685	4.015
17		1.740	2.110	2.567	2.898	3.646	3.965
14		1.33	2.101	2.552	2.878	3.610	3.922
19		1.729	2.093	2.539	2.861	3.579	3.883
34		1.725	2.086	2528	2.843	3.552	3.850
21		1.721	2.080	2.518	2.831	3.527	3.819
12		1717	2.074	2.508	2,819	3. 505	3.792
23		1.714	2.069	2.500	2.807	3.485	3.768
24		1.711	2.064	2.492	2.797	3.467	3.745
25		1.708	2.060	2485	2.787	3.450	3.75
26		1.206	2.056	2479	2.779	3.435	3.707
27		1.703	2.052	2473	2.771	3.421	3.600
28		1.701	2.048	2467	2.763	3.408	3,674
29		1.699	2.045	2.462	2.756	3,396	3.699
30		1.697	2.042	2.477	2.250	3.385	3.646
32		1.094	2.037	2,449	2.738	3.365	3,602
34		1691	2.02	2441	2.728	3.348	3.601
36		1,688	2.024	2.434	2.719	3,333	3.582
36		1.688	2.024	2.429	2.712	3.319	3.366
40		1.684	2021	2.423	2.704	3.307	3.551
42		1.682	2.018	2.418	2.68	3.29\%	3,536
4		1.680	2.015	2.414	2.692	3.286	3.526
46		1,679	2.013	2.410	2.687	1.277	3.515
4		1,677	2.011	2407	2.682	3.269	3.505
50		1.6\%	2.009	2,403	2.67	3.261	3.4\%
60		1.671	2.000	2.390	2.600	3.232	3460
70		1.687	1.904	2.381	2,648	1.211	3,435
80		1.064	1.900	2.374	2.639	3.195	3.416
90		1.662	1.987	2368	2.652	3.183	3.402
100		1.660	1.984	2.364	2.626	3.174	3390
120		1.658	1.989	2.358	2.617	3.160	3.373
150		1.655	1.976	2.331	2.609	3.145	3,357
200		1.653	1.972	2.345	2.601	3.131	3.340
300		1.650	1.963	2.339	2.592	3.118	3.323
40		1.649	106	2.336	2.588	3.111	3.315
500		1.648	1.965	2334	2.58	3.107	3.310
600		1.647	1.64	2.333	2.584	3.104	3.307
∞		1,645	1.960	2.326	2.576	3.0\%0	3.291

